OFFSET
1,1
COMMENTS
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = Sum_{k>=2} f(k) = 0.053695635500385312854..., where f(k) = Product_{p prime} (1 + 1/p^k + 1/p^(k+1)) - zeta(k)/zeta(2*k) - zeta(k+1)/zeta(2*k+2) + 1 is the sum of reciprocals of the subset of numbers m with A051904(m) = k.
EXAMPLE
MATHEMATICA
q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, 2 <= Min[e] == Max[e] - 1]; Select[Range[12000], q]
PROG
(PARI) is(k) = {my(e = factor(k)[, 2]); k > 1 && 2 <= vecmin(e) && vecmin(e) + 1 == vecmax(e); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 01 2024
STATUS
approved