login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190472
Numbers with prime factorization p^3*q^3*r^4 where p, q, and r are distinct primes.
5
54000, 81000, 135000, 148176, 222264, 518616, 574992, 686000, 862488, 949104, 1423656, 1715000, 2122416, 2401000, 2662000, 2963088, 3162456, 3183624, 3472875, 4394000, 4444632, 5256144, 5788125, 6169176, 6655000, 7304528, 7884216
OFFSET
1,1
FORMULA
Sum_{n>=1} 1/a(n) = P(3)^2*P(4)/2 - P(4)*P(6)/2 - P(3)*P(7) + P(10) = 0.000064520760706206924448..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={3, 3, 4}; Select[Range[5000000], f] (*and*) lst={}; Do[If[k!=n && k!=m && n!=m, AppendTo[lst, Prime[k]^3*Prime[n]^3*Prime[m]^4]], {n, 25}, {m, 25}, {k, 25}]; Take[Union@lst, 60]
PROG
(PARI) list(lim)=my(v=List(), t1, t2); forprime(p=2, (lim\216)^(1/4), t1=p^4; forprime(q=2, (lim\t1)^(1/3), if(p==q, next); t2=t1*q^3; forprime(r=q+1, (lim\t2)^(1/3), if(p==r, next); listput(v, t2*r^3)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved