|
|
A190470
|
|
Numbers with prime factorization p^2q^3r^5.
|
|
4
|
|
|
21600, 36000, 42336, 48600, 95256, 98784, 104544, 121500, 146016, 196000, 225000, 235224, 249696, 274400, 311904, 328536, 333396, 337500, 383328, 457056, 484000, 561816, 632736, 676000, 701784, 726624, 830304, 1028376, 1064800, 1156000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
MATHEMATICA
|
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 3, 5}; Select[Range[2500000], f] (*and*) lst={}; Do[If[k!=n && k!=m && n!=m, AppendTo[lst, Prime[k]^2*Prime[n]^3*Prime[m]^5]], {n, 20}, {m, 20}, {k, 20}]; Take[Union@lst, 60]
|
|
PROG
|
(PARI) list(lim)=my(v=List(), t1, t2); forprime(p=2, (lim\72)^(1/5), t1=p^5; forprime(q=2, (lim\t1)^(1/3), if(p==q, next); t2=t1*q^3; forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next); listput(v, t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|