login
A211236
Prime numbers p such that x^2 + x + p produces primes for x = 0..7 but not x = 8.
2
21557, 26681, 128981, 2073347, 3992201, 4889237, 6184637, 11900501, 21456047, 24598361, 33771581, 34864211, 50943791, 55793951, 56421347, 61218251, 67787537, 69726647, 76345121, 86145881, 90261707, 92865791, 99624647, 102960281, 108846161
OFFSET
1,1
COMMENTS
The first term is A164926(8).
MATHEMATICA
lookfor = 8; t = {}; n = 0; While[Length[t] < 25, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
Select[Prime[Range[6250000]], AllTrue[#+{2, 6, 12, 20, 30, 42, 56}, PrimeQ] && !PrimeQ[ #+72]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 04 2016 *)
CROSSREFS
Sequence in context: A295994 A063388 A252393 * A221002 A190470 A113620
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 08 2012
STATUS
approved