login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072777
Powers of squarefree numbers that are not squarefree.
14
4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 169, 196, 216, 225, 243, 256, 289, 343, 361, 441, 484, 512, 529, 625, 676, 729, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1681, 1764, 1849
OFFSET
1,1
COMMENTS
For all n exists k: a(n) = A072774(k) and A072776(k) > 1.
Numbers k such that every prime in the prime factorization of k is raised to the same power > 1; k is a term iff k/A007947(k)^m = 1 for some m > 1. - David James Sycamore, Jun 12 2024
LINKS
Stanislav Sykora and Reinhard Zumkeller, Table of n, a(n) for n = 1..20000 (first 10000 terms from Reinhard Zumkeller)
FORMULA
Sum_{n>=1} 1/a(n) = Sum_{n>=2} mu(n)^2/(n*(n-1)) = Sum_{n>=2} (zeta(n)/zeta(2*n) - 1) = 0.8486338679... (A368250). - Amiram Eldar, Jul 22 2020
EXAMPLE
The number 144 = 12^2 is not a member because 12 is not squarefree.
64 = 2^6 and 49 = 7^2 are members because, though not squarefree, they are powers of the squarefree numbers 2 and 7, respectively. Note that 64 is included even though it is also a square of a nonsquarefree number. - Stanislav Sykora, Jul 11 2014
MATHEMATICA
Select[Range[2000], Length[u = Union[FactorInteger[#][[All, 2]]]] == 1 && u[[1]] > 1 &] (* Jean-François Alcover, Mar 27 2013 *)
PROG
(Haskell)
import Data.Map (singleton, findMin, deleteMin, insert)
a072777 n = a072777_list !! (n-1)
a072777_list = f 9 (drop 2 a005117_list) (singleton 4 (2, 2)) where
f vv vs'@(v:ws@(w:_)) m
| xx < vv = xx : f vv vs' (insert (bx*xx) (bx, ex+1) $ deleteMin m)
| xx > vv = vv : f (w*w) ws (insert (v^3) (v, 3) m)
where (xx, (bx, ex)) = findMin m
-- Reinhard Zumkeller, Apr 06 2014
(PARI) BelongsToA(n) = {my(f, k, e); if(n == 1, return(0));
f = factor(n); e = f[1, 2]; if(e == 1, return(0));
for(k = 2, #f[, 2], if(f[k, 2] != e, return(0))); return(1); }
Ntest(nmax, test) = {my(k = 1, n = 0, v); v = vector(nmax); while(1, n++; if(test(n), v[k] = n; k++; if(k > nmax, break)); ); return(v); }
a = Ntest(20000, BelongsToA) \\ Note: not very efficient. - Stanislav Sykora, Jul 11 2014
(PARI) is(n)=ispower(n, , &n) && issquarefree(n) \\ Charles R Greathouse IV, Oct 16 2015
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A072777(n):
def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1
def f(x): return n-1+x-sum(g(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 19 2024
CROSSREFS
Cf. A005117, subsequence of A001597 and A072774.
Cf. A007947.
Sequence in context: A157985 A001597 A359493 * A076292 A090516 A090515
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Jul 10 2002
STATUS
approved