Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 Aug 19 2024 11:38:51
%S 4,8,9,16,25,27,32,36,49,64,81,100,121,125,128,169,196,216,225,243,
%T 256,289,343,361,441,484,512,529,625,676,729,841,900,961,1000,1024,
%U 1089,1156,1225,1296,1331,1369,1444,1521,1681,1764,1849
%N Powers of squarefree numbers that are not squarefree.
%C For all n exists k: a(n) = A072774(k) and A072776(k) > 1.
%C Numbers k such that every prime in the prime factorization of k is raised to the same power > 1; k is a term iff k/A007947(k)^m = 1 for some m > 1. - _David James Sycamore_, Jun 12 2024
%H Stanislav Sykora and Reinhard Zumkeller, <a href="/A072777/b072777.txt">Table of n, a(n) for n = 1..20000</a> (first 10000 terms from Reinhard Zumkeller)
%F Sum_{n>=1} 1/a(n) = Sum_{n>=2} mu(n)^2/(n*(n-1)) = Sum_{n>=2} (zeta(n)/zeta(2*n) - 1) = 0.8486338679... (A368250). - _Amiram Eldar_, Jul 22 2020
%e The number 144 = 12^2 is not a member because 12 is not squarefree.
%e 64 = 2^6 and 49 = 7^2 are members because, though not squarefree, they are powers of the squarefree numbers 2 and 7, respectively. Note that 64 is included even though it is also a square of a nonsquarefree number. - _Stanislav Sykora_, Jul 11 2014
%t Select[Range[2000], Length[u = Union[FactorInteger[#][[All, 2]]]] == 1 && u[[1]] > 1 &] (* _Jean-François Alcover_, Mar 27 2013 *)
%o (Haskell)
%o import Data.Map (singleton, findMin, deleteMin, insert)
%o a072777 n = a072777_list !! (n-1)
%o a072777_list = f 9 (drop 2 a005117_list) (singleton 4 (2, 2)) where
%o f vv vs'@(v:ws@(w:_)) m
%o | xx < vv = xx : f vv vs' (insert (bx*xx) (bx, ex+1) $ deleteMin m)
%o | xx > vv = vv : f (w*w) ws (insert (v^3) (v, 3) m)
%o where (xx, (bx, ex)) = findMin m
%o -- _Reinhard Zumkeller_, Apr 06 2014
%o (PARI) BelongsToA(n) = {my(f, k, e); if(n == 1, return(0));
%o f = factor(n); e = f[1, 2]; if(e == 1, return(0));
%o for(k = 2, #f[, 2], if(f[k, 2] != e, return(0))); return(1);}
%o Ntest(nmax, test) = {my(k = 1, n = 0, v); v = vector(nmax); while(1, n++; if(test(n), v[k] = n; k++; if(k > nmax, break)); ); return(v); }
%o a = Ntest(20000, BelongsToA) \\ Note: not very efficient. - _Stanislav Sykora_, Jul 11 2014
%o (PARI) is(n)=ispower(n,,&n) && issquarefree(n) \\ _Charles R Greathouse IV_, Oct 16 2015
%o (Python)
%o from math import isqrt
%o from sympy import mobius, integer_nthroot
%o def A072777(n):
%o def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1
%o def f(x): return n-1+x-sum(g(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))
%o kmin, kmax = 1,2
%o while f(kmax) >= kmax:
%o kmax <<= 1
%o while True:
%o kmid = kmax+kmin>>1
%o if f(kmid) < kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o if kmax-kmin <= 1:
%o break
%o return kmax # _Chai Wah Wu_, Aug 19 2024
%Y Cf. A013929, A368250.
%Y Cf. A005117, subsequence of A001597 and A072774.
%Y Cf. A007947.
%K nonn,nice
%O 1,1
%A _Reinhard Zumkeller_, Jul 10 2002