login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375071
Smallest k such that Product_{i=1..k} (n+i) divides Product_{i=1..k} (n+k+i), or 0 if there is no such k.
1
1, 5, 4, 207, 206, 2475, 984, 8171, 8170, 45144, 45143, 3648830, 3648829, 7979077, 7979076, 58068862, 58068861, 255278295, 255278294
OFFSET
0,2
COMMENTS
Erdős and Straus asked if a(n) exists for all n.
EXAMPLE
3*4*5*6 ∣ 7*8*9*10, so a(2) = 4.
PROG
(PARI) a(n) = my(k=1); while(prod(i=1, k, n+k+i)%prod(i=1, k, n+i), k++); k;
(Python)
from itertools import count
def A375071(n):
a, b = n+1, n+2
for k in count(1):
if not b%a:
return k
a *= n+k+1
b = b*(n+2*k+1)*(n+2*k+2)//(n+k+1) # Chai Wah Wu, Aug 01 2024
CROSSREFS
Sequence in context: A186639 A266668 A043299 * A144776 A371264 A065937
KEYWORD
nonn,hard,more
AUTHOR
Ralf Stephan, Jul 29 2024
EXTENSIONS
a(10)-a(18) from Bhavik Mehta, Aug 16 2024
STATUS
approved