login
A375068
Decimal expansion of the sagitta of a regular pentagon with unit side length.
9
1, 6, 2, 4, 5, 9, 8, 4, 8, 1, 1, 6, 4, 5, 3, 1, 6, 3, 0, 7, 7, 9, 3, 5, 7, 0, 6, 1, 0, 7, 5, 6, 7, 2, 3, 2, 4, 7, 7, 4, 5, 1, 7, 3, 5, 7, 6, 0, 7, 3, 7, 5, 5, 0, 1, 5, 3, 9, 0, 2, 3, 5, 9, 5, 6, 8, 3, 3, 6, 4, 5, 0, 4, 8, 0, 3, 7, 2, 4, 7, 4, 1, 6, 1, 3, 4, 3, 8, 6, 7
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Regular Polygon.
Eric Weisstein's World of Mathematics, Sagitta
FORMULA
Equals tan(Pi/10)/2 = sqrt(1-2/sqrt(5))/2 = A019916/2.
Equals A300074 - A375067.
Equals A179050/5 = sqrt(A229760)/10. - Hugo Pfoertner, Jul 30 2024
EXAMPLE
0.1624598481164531630779357061075672324774517357607...
MATHEMATICA
First[RealDigits[Tan[Pi/10]/2, 10, 100]]
CROSSREFS
Cf. A300074 (circumradius), A375067 (apothem), A102771 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375069 (hexagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).
Sequence in context: A370465 A358089 A010493 * A175286 A061496 A125115
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Jul 29 2024
STATUS
approved