OFFSET
0,1
COMMENTS
This is the ratio of the radius r of the circumscribing circle of a regular pentagon and its side length s: r/s = 1/(2*sin(Pi/5)).
A quartic number of denominator 5 and minimal polynomial 5x^4 - 5x^2 + 1. - Charles R Greathouse IV, Mar 04 2018
Appears at Schur decomposition of A=[1 2; 2 3]. - Donghwi Park, Jun 20 2018
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..2000
Wikipedia, Schur decomposition.
FORMULA
r/s = 1/A182007 = A121570/2 = (2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = (1 + sqrt(5))/2 = A001622.
From Amiram Eldar, Feb 08 2022: (Start)
Equals cos(arccot(phi)) = cos(arctan(1/phi)) = cos(A195693).
Equals sin(arctan(phi)) = sin(arccot(1/phi)) = sin(A195723). (End)
Equals Product_{k>=1} (1 + (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024
EXAMPLE
r/s = 0.850650808352039932181540497063011072240401403764816881836740242377...
2*r/s = A121570.
MATHEMATICA
RealDigits[1/(2 Sin[Pi/5]), 10, 111][[1]] (* Robert G. Wilson v, Jul 15 2018 *)
PROG
(PARI) 1/(2*sin(Pi/5)) \\ Charles R Greathouse IV, Mar 04 2018
(PARI) sqrt((5+sqrt(5))/10) \\ Charles R Greathouse IV, Mar 04 2018
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Mar 01 2018
STATUS
approved