Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Nov 23 2024 04:30:43
%S 8,5,0,6,5,0,8,0,8,3,5,2,0,3,9,9,3,2,1,8,1,5,4,0,4,9,7,0,6,3,0,1,1,0,
%T 7,2,2,4,0,4,0,1,4,0,3,7,6,4,8,1,6,8,8,1,8,3,6,7,4,0,2,4,2,3,7,7,8,8,
%U 4,0,4,7,3,6,3,9,5,8,9,6,6,6,9,4,3,2,0,3,6,4,2,7,8,5,1,7,6
%N Decimal expansion of 1/(2*sin(Pi/5)) = A121570/2.
%C This is the reciprocal of A182007, and one half of A121570.
%C This is the ratio of the radius r of the circumscribing circle of a regular pentagon and its side length s: r/s = 1/(2*sin(Pi/5)).
%C A quartic number of denominator 5 and minimal polynomial 5x^4 - 5x^2 + 1. - _Charles R Greathouse IV_, Mar 04 2018
%C Appears at Schur decomposition of A=[1 2; 2 3]. - _Donghwi Park_, Jun 20 2018
%H Muniru A Asiru, <a href="/A300074/b300074.txt">Table of n, a(n) for n = 0..2000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Schur_decomposition">Schur decomposition</a>.
%H <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F r/s = 1/A182007 = A121570/2 = (2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = (1 + sqrt(5))/2 = A001622.
%F From _Amiram Eldar_, Feb 08 2022: (Start)
%F Equals cos(arccot(phi)) = cos(arctan(1/phi)) = cos(A195693).
%F Equals sin(arctan(phi)) = sin(arccot(1/phi)) = sin(A195723). (End)
%F Equals Product_{k>=1} (1 + (-1)^k/A090773(k)). - _Amiram Eldar_, Nov 23 2024
%e r/s = 0.850650808352039932181540497063011072240401403764816881836740242377...
%e 2*r/s = A121570.
%t RealDigits[1/(2 Sin[Pi/5]), 10, 111][[1]] (* _Robert G. Wilson v_, Jul 15 2018 *)
%o (PARI) 1/(2*sin(Pi/5)) \\ _Charles R Greathouse IV_, Mar 04 2018
%o (PARI) sqrt((5+sqrt(5))/10) \\ _Charles R Greathouse IV_, Mar 04 2018
%Y Cf. A001622, A090773, A121570, A182007, A195693, A195723.
%K nonn,cons,easy
%O 0,1
%A _Wolfdieter Lang_, Mar 01 2018