|
|
A076470
|
|
Perfect powers m^k where k >= 6.
|
|
6
|
|
|
1, 64, 128, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 46656, 59049, 65536, 78125, 117649, 131072, 177147, 262144, 279936, 390625, 524288, 531441, 823543, 1000000, 1048576, 1594323, 1679616, 1771561
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A necessary but not sufficient condition is that if p|n when at least p^6|n.
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=1} 1/a(n) = 5 - zeta(2) - zeta(3) - zeta(4) - zeta(5) + Sum_{k>=2} mu(k)*(5 - zeta(k) - zeta(2*k) - zeta(3*k) - zeta(4*k) - zeta(5*k)) = 1.03342597171... . - Amiram Eldar, Dec 03 2022
|
|
MATHEMATICA
|
a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 4, a = Append[a, n]; Print[n]], {n, 2, 1953124}]; a
|
|
PROG
|
(Python)
from sympy import mobius, integer_nthroot
def f(x): return int(n+9+x-(sum(integer_nthroot(x, d)[0] for d in (6, 10, 15))<<1)-sum(integer_nthroot(x, d)[0] for d in (8, 9, 12, 20, 25))+sum(mobius(k)*(sum(integer_nthroot(x, k*i)[0] for i in range(1, 6))-5) for k in range(6, x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|