OFFSET
1,1
COMMENTS
Motivated by the search of solutions to a^n + b^(2n+2)/4 = (perfect square), which arises when searching solutions to x^n + y^(n+1) = z^(n+2) of the form x = a*z, y = b*z. It turns out that many solutions are of the form a^n = d (b^(n+1) + d), where d is a perfect power.
EXAMPLE
3^5 = 3^3 + 6^3; 5^5 = 10^2 + 55^2, 6^5 = 2^5 + 88^2, ...
MAPLE
LIM:= 200^5: P:={seq(seq(x^k, k=3..floor(log[x](LIM))), x=2..floor(LIM^(1/3)))}:
is_A304435:= proc(n) local n5, Pp; n5:= n^5; if remove(t -> subs(t, x)<=1 or subs(t, y)<=1 or subs(t, x-y)=0, [isolve(x^2+y^2=n^5)]) <> [] then return true fi; Pp:= map(t ->n5-t, P minus {n5, n5/2}); (Pp intersect P <> {}) or (select(issqr, Pp) <> {})
end proc: # adapted from code by Robert Israel for A304434
MATHEMATICA
M = 200; LIM = M^5;
P = Flatten @ Table[Table[x^k, {k, 3, Floor[Log[x, LIM]]}], {x, 2, Floor[ LIM^(1/3)]}];
filterQ[n_] := Module[{n5 = n^5, Pp, x, y}, If[Solve[x > 1 && y > 1 && x != y && x^2 + y^2 == n5, {x, y}, Integers] != {}, Return[True]]; Pp = n5 - (P ~Complement~ {n5, n5/2}); (Pp ~Intersection~ P) != {} || Select[Pp, IntegerQ[Sqrt[#]]&] != {}];
Select[Range[2, M], filterQ] (* Jean-François Alcover, Jun 21 2020, after Maple *)
PROG
(PARI) N=200; L=N^5; P=List(); for(x=2, sqrtnint(L, 3), for(k=3, logint(L, x), listput(P, x^k))); P=Set(P);
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 25 2018
STATUS
approved