

A240660


Least k such that 5^k == 1 (mod prime(n)), or 0 if no such k exists.


1



1, 1, 0, 3, 0, 2, 8, 0, 11, 7, 0, 18, 10, 21, 23, 26, 0, 15, 11, 0, 36, 0, 41, 22, 48, 0, 51, 53, 0, 56, 21, 0, 68, 0, 0, 0, 78, 27, 83, 86, 0, 0, 0, 96, 98, 0, 0, 111, 113, 57, 116, 0, 20, 0, 128, 131, 0, 0, 138, 70, 141, 146, 153, 0, 4, 158, 0, 56, 173, 87
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

The least k, if it exists, such that prime(n) divides 5^k + 1.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000


FORMULA

a(1) = 1; for n > 1, a(n) = A211241(n)/2 if A211241(n) is even, otherwise 0.


MATHEMATICA

Table[p = Prime[n]; s = Select[Range[p/2], PowerMod[5, #, p] == p  1 &, 1]; If[s == {}, 0, s[[1]]], {n, 100}]


CROSSREFS

Cf. A211241 (order of 5 mod prime(n)).
Sequence in context: A126671 A209437 A325447 * A330646 A341905 A099095
Adjacent sequences: A240657 A240658 A240659 * A240661 A240662 A240663


KEYWORD

nonn


AUTHOR

T. D. Noe, Apr 14 2014


STATUS

approved



