login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123301
Triangle read by rows: T(n,k) is the number of specially labeled bicolored nonseparable graphs with k points in one color class and n-k points in the other class. "Special" means there are separate labels 1,2,...,k and 1,2,...,n-k for the two color classes (n >= 2, k = 1,...,n-1).
3
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 34, 1, 0, 0, 1, 199, 199, 1, 0, 0, 1, 916, 7037, 916, 1, 0, 0, 1, 3889, 117071, 117071, 3889, 1, 0, 0, 1, 15982, 1535601, 6317926, 1535601, 15982, 1, 0, 0, 1, 64747, 18271947, 228842801, 228842801, 18271947
OFFSET
2,13
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 rows; first 24 rows from R. W. Robinson)
F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
FORMULA
A004100(n) = (1/2) * Sum_{k=1..n-1} binomial(n,k)*T(n,k). - Andrew Howroyd, Jan 03 2021
EXAMPLE
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 34, 1, 0;
0, 1, 199, 199, 1, 0;
0, 1, 916, 7037, 916, 1, 0;
0, 1, 3889, 117071, 117071, 3889, 1, 0;
...
Formatted as an array:
=================================================
k/j | 1 2 3 4 5 6
--- +-------------------------------------------
1 | 1 0 0 0 0 0 ...
2 | 0 1 1 1 1 1 ...
3 | 0 1 34 199 916 3889 ...
4 | 0 1 199 7037 117071 1535601 ...
5 | 0 1 916 117071 6317926 228842801 ...
6 | 0 1 3889 1535601 228842801 21073662977 ...
...
PROG
(PARI)
G(n)={sum(i=0, n, x^i*(sum(j=0, n, y^j*2^(i*j)/(i!*j!)) + O(y*y^n))) + O(x*x^n)}
\\ this switches x/y halfway through because PARI only does serreverse in x.
B(n)={my(p=log(G(n))); p=subst(deriv(p, y), x, serreverse(x*deriv(p, x))); p=substvec(p, [x, y], [y, x]); intformal(log(x/serreverse(x*p)))}
M(n)={my(p=B(n)); matrix(n, n, i, j, polcoef(polcoef(p, j), i)*i!*j!)}
{ my(A=M(6)); for(n=1, #A~, print(A[n, ])) } \\ Andrew Howroyd, Jan 04 2021
CROSSREFS
Central coefficients are A005334.
Sequence in context: A228426 A023928 A022070 * A328913 A269482 A037933
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 12 2006
EXTENSIONS
Offset corrected by Andrew Howroyd, Jan 04 2021
STATUS
approved