OFFSET
2,13
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 rows; first 24 rows from R. W. Robinson)
F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
FORMULA
A004100(n) = (1/2) * Sum_{k=1..n-1} binomial(n,k)*T(n,k). - Andrew Howroyd, Jan 03 2021
EXAMPLE
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 34, 1, 0;
0, 1, 199, 199, 1, 0;
0, 1, 916, 7037, 916, 1, 0;
0, 1, 3889, 117071, 117071, 3889, 1, 0;
...
Formatted as an array:
=================================================
k/j | 1 2 3 4 5 6
--- +-------------------------------------------
1 | 1 0 0 0 0 0 ...
2 | 0 1 1 1 1 1 ...
3 | 0 1 34 199 916 3889 ...
4 | 0 1 199 7037 117071 1535601 ...
5 | 0 1 916 117071 6317926 228842801 ...
6 | 0 1 3889 1535601 228842801 21073662977 ...
...
PROG
(PARI)
G(n)={sum(i=0, n, x^i*(sum(j=0, n, y^j*2^(i*j)/(i!*j!)) + O(y*y^n))) + O(x*x^n)}
\\ this switches x/y halfway through because PARI only does serreverse in x.
B(n)={my(p=log(G(n))); p=subst(deriv(p, y), x, serreverse(x*deriv(p, x))); p=substvec(p, [x, y], [y, x]); intformal(log(x/serreverse(x*p)))}
M(n)={my(p=B(n)); matrix(n, n, i, j, polcoef(polcoef(p, j), i)*i!*j!)}
{ my(A=M(6)); for(n=1, #A~, print(A[n, ])) } \\ Andrew Howroyd, Jan 04 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 12 2006
EXTENSIONS
Offset corrected by Andrew Howroyd, Jan 04 2021
STATUS
approved