Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jun 18 2019 06:15:48
%S 1,2,6,15,630,2835,155925,6081075,1277025750,10854718875,
%T 1856156927625,194896477400625,2900518163668125,3698160658676859375,
%U 1298054391195577640625,263505041412702261046875,245059688513813102773593750,4043484860477916195764296875
%N Denominator of (4^n*(4^n-1)/2)*B_{2n}/(2n)!, B_{n} Bernoulli number.
%C Numerator is (-1)^(n+1)*A046990(n).
%H Michel Marcus, <a href="/A181993/b181993.txt">Table of n, a(n) for n = 0..100</a>
%H William Rowan Hamilton, <a href="https://doi.org/10.1080/14786444308644751">On an expression for the numbers of Bernoulli, by means of a definite integral, and on some connected processes of summation and integration</a>, Philosophical Magazine, 23 (1843), pp. 360-367.
%F a(n) = denominator of (1/Pi)*Integral(x>=0, (sin(x)/x)^(2*n)*sin(2*n*x)*tan(x)).
%p A181993 := n -> denom((4^n*(4^n-1)/2)*bernoulli(2*n)/(2*n)!);
%p seq(A181993(i), i=0..18);
%t a[n_] := Denominator[4^n (4^n-1)/2 BernoulliB[2n]/(2n)!];
%t Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Jun 18 2019 *)
%o (PARI) a(n) = denominator((4^n*(4^n-1)/2)*bernfrac(2*n)/(2*n)!); \\ _Michel Marcus_, Jun 18 2019
%Y Cf. A046990.
%K nonn,frac
%O 0,2
%A _Peter Luschny_, Apr 05 2012