login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form k * b^b + 1, with b > 1.
4

%I #27 Aug 03 2024 14:29:26

%S 5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,163,173,181,

%T 193,197,229,233,241,257,269,271,277,281,293,313,317,337,349,353,373,

%U 379,389,397,401,409,421,433,449,457,461,487,509,521,541,557,569,577,593,601,613

%N Primes of the form k * b^b + 1, with b > 1.

%C Without the restriction on b, the sequence would be identical to A000040.

%H Seiichi Manyama, <a href="/A175768/b175768.txt">Table of n, a(n) for n = 1..10000</a>

%e For a(3), 4 * 2^2 + 1 = 17, which is prime.

%e From _Seiichi Manyama_, Mar 27 2018: (Start)

%e n | a(n)

%e ---+----------------------------------

%e 1 | 5 = 1 * 2^2 + 1.

%e 2 | 13 = 3 * 2^2 + 1.

%e 3 | 17 = 4 * 2^2 + 1.

%e 4 | 29 = 7 * 2^2 + 1.

%e 5 | 37 = 9 * 2^2 + 1.

%e 6 | 41 = 10 * 2^2 + 1.

%e 7 | 53 = 13 * 2^2 + 1.

%e 8 | 61 = 15 * 2^2 + 1.

%e 9 | 73 = 18 * 2^2 + 1.

%e 10 | 89 = 22 * 2^2 + 1.

%e 11 | 97 = 24 * 2^2 + 1.

%e 12 | 101 = 25 * 2^2 + 1.

%e 13 | 109 = 27 * 2^2 + 1 = 4 * 3^3 + 1. (End)

%t Take[ Select[ Union@ Flatten@ Table[ k*b^b + 1, {b, 2, 20}, {k, 148}], PrimeQ], 55] (* _Robert G. Wilson v_, Sep 01 2010 *)

%o (PARI) isA175768(n)=if(!isprime(n),return(0)); if(n%4==1||n%27==1,return(1)); forprime(b=5,log(n)/log(7),if(n%(b^b)==1,return(1)));0 \\ _Charles R Greathouse IV_, Sep 02 2010

%Y Cf. A000040, A002144, A180362, A285015.

%K easy,nonn

%O 1,1

%A Kevin Batista (kevin762401(AT)yahoo.com), Sep 01 2010

%E Corrected and edited by _Charles R Greathouse IV_, Sep 02 2010