login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form p*b^b + 1, where p is a prime and b>1.
1

%I #19 Jun 16 2022 14:27:15

%S 13,29,53,149,173,269,293,317,389,509,557,653,769,773,797,1109,1229,

%T 1493,1637,1733,1949,1997,2309,2477,2693,2837,2909,2957,3329,3413,

%U 3533,3677,3989,4133,4157,4253,4349,4373,4493,4517,5189,5309,5693,5717,5813,6173

%N Primes of the form p*b^b + 1, where p is a prime and b>1.

%H Robert Israel, <a href="/A286658/b286658.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 3*(2^2)+1 = 13.

%e a(2) = 7*(2^2)+1 = 29.

%e a(3) = 13*(2^2)+1 = 53.

%p N:= 10000: # for all terms <= N

%p Res:= NULL:

%p P:= select(isprime, [2,seq(i,i=3..N/4,2)]):

%p for b from 2 do

%p q:= b^b; if q > N/2 then break fi;

%p for i from 1 to nops(P) do

%p x:= P[i]*q+1;

%p if x > N then break fi;

%p if isprime(x) then Res:= Res, x fi;

%p od od:

%p sort(convert({Res},list)); # _Robert Israel_, Nov 12 2019

%t nmax=10^4; pimax=PrimePi[nmax]; bmax=1;While[(bmax+1)^(bmax+1)<=nmax,bmax++];Select[Union@Flatten@Table[Prime[pi] b^b+1,{b,2,bmax},{pi,pimax}],PrimeQ[#]&&#<=nmax&]

%o (PARI) list(lim)=my(v=List()); lim\=1; for(b=2,oo, my(p=2*b^b+1); if(p>lim, break); if(isprime(p), listput(v,p))); forstep(b=2,oo,2, my(B=b^b); if(3*B+1>lim, break); forprime(q=3,(lim-1)\B, my(p=q*B+1); if(isprime(p), listput(v,p)))); Set(v) \\ _Charles R Greathouse IV_, Jun 16 2022

%Y Cf. A175768, A285015.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, May 12 2017