login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of maximal-sized antichains in divisor lattice D(n).
3

%I #12 Mar 06 2020 15:48:25

%S 1,2,2,3,2,1,2,4,3,1,2,3,2,1,1,5,2,3,2,3,1,1,2,6,3,1,4,3,2,2,2,6,1,1,

%T 1,1,2,1,1,6,2,2,2,3,3,1,2,10,3,3,1,3,2,6,1,6,1,1,2,1,2,1,3,7,1,2,2,3,

%U 1,2,2,4,2,1,3,3,1,2,2,10,5,1,2,1,1,1

%N Number of maximal-sized antichains in divisor lattice D(n).

%C The divisor lattice D(n) is the lattice of the divisors of the natural number n.

%H Eric M. Schmidt, <a href="/A096826/b096826.txt">Table of n, a(n) for n = 1..10000</a>

%e From _Gus Wiseman_, Aug 24 2018: (Start)

%e The a(120) = 6 antichains:

%e {8,12,20,30}

%e {8,12,15,20}

%e {8,10,12,15}

%e {6,8,15,20}

%e {6,8,10,15}

%e {4,6,10,15}

%e (End)

%o (Sage)

%o def A096826(n) :

%o if n==1 : return 1

%o R.<t> = QQ[]; mults = [x[1] for x in factor(n)]

%o maxsize = prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2]

%o dlat = LatticePoset((divisors(n), attrcall("divides")))

%o count = 0

%o for ac in dlat.antichains_iterator() :

%o if len(ac) == maxsize : count += 1

%o return count

%o # _Eric M. Schmidt_, May 13 2013

%Y Cf. A000005, A008480, A096825, A096827, A253249, A285572 A285573.

%K nonn

%O 1,2

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 17 2004

%E More terms from _Eric M. Schmidt_, May 13 2013