The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095662 Seventh column (m=6) of (1,3)-Pascal triangle A095660. 3
 3, 19, 70, 196, 462, 966, 1848, 3300, 5577, 9009, 14014, 21112, 30940, 44268, 62016, 85272, 115311, 153615, 201894, 262108, 336490, 427570, 538200, 671580, 831285, 1021293, 1246014, 1510320, 1819576, 2179672, 2597056, 3078768, 3632475 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS If Y is a 3-subset of an n-set X then, for n>=8, a(n-8) is the number of 6-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007 LINKS Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1). FORMULA G.f.: (3-2*x)/(1-x)^7. a(n)= binomial(n+5, 5)*(n+18)/6 = 3*b(n)-2*b(n-1), with b(n):=binomial(n+6, 6); cf. A000579. a(0)=3, a(1)=19, a(2)=70, a(3)=196, a(4)=462, a(5)=966, a(6)=1848, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Mar 30 2014 MATHEMATICA CoefficientList[Series[(3-2x)/(1-x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {3, 19, 70, 196, 462, 966, 1848}, 40] (* Harvey P. Dale, Mar 30 2014 *) CROSSREFS Sixth column: A000574. Eighth column: A095663. Sequence in context: A211061 A059599 A183461 * A090698 A215802 A202041 Adjacent sequences:  A095659 A095660 A095661 * A095663 A095664 A095665 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 11 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 23:53 EST 2020. Contains 338920 sequences. (Running on oeis4.)