login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035636
Number of partitions of n into parts 5k+3 and 5k+4 with at least one part of each type.
3
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 3, 3, 4, 3, 4, 7, 7, 8, 8, 10, 14, 14, 16, 18, 20, 27, 28, 30, 35, 40, 48, 52, 55, 64, 73, 85, 90, 98, 114, 128, 143, 155, 168, 195, 214, 237, 259, 283, 319, 353, 385, 422, 460, 516, 564, 618, 672, 734, 816, 892, 964, 1057
OFFSET
1,12
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(5 k + 3)))*(-1 + 1/Product_{k>=0} (1 - x^(5 k + 4))). - Robert Price, Aug 16 2020
MATHEMATICA
nmax = 66; s1 = Range[0, nmax/5]*5 + 3; s2 = Range[0, nmax/5]*5 + 4;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 07 2020 *)
nmax = 66; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(5 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(5 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020 *)
KEYWORD
nonn
STATUS
approved