OFFSET
0,6
COMMENTS
Number of partitions of n into distinct parts congruent to 0 or 1 mod 4.
FORMULA
G.f.: Product_{k>=1} (1 + x^A042948(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018
EXAMPLE
a(9) = 3 because we have [9], [8, 1] and [5, 4].
MATHEMATICA
nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k)) (1 + x^(4 k - 3)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 70; CoefficientList[Series[x^3 QPochhammer[-1, x^4] QPochhammer[-x^(-3), x^4]/(2 (1 + x) (1 - x + x^2)), {x, 0, nmax}], x]
nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 1}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 22 2018
STATUS
approved