login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265251
Number of partitions of n such that there is exactly one part which occurs three times, while all other parts occur only once.
4
0, 0, 0, 1, 0, 1, 2, 2, 2, 4, 6, 6, 9, 10, 14, 19, 22, 26, 35, 40, 50, 63, 74, 88, 107, 127, 150, 181, 213, 249, 296, 345, 401, 473, 546, 636, 741, 853, 983, 1138, 1306, 1498, 1722, 1967, 2247, 2574, 2925, 3327, 3788, 4294, 4866, 5516, 6233, 7036, 7947, 8953
OFFSET
0,7
COMMENTS
Conjecture: a(n) is also the difference between the number of parts in the distinct partitions of n and the number of distinct parts in the odd partitions of n (offset 0). For example, if n = 5, there are 5 parts in the distinct partitions of 5 (5, 41, 32) and 4 distinct parts in the odd partitions of 5 (namely, 5,3,1,1 in 5,311,11111) with difference 1. - George Beck, Apr 22 2017
George E. Andrews has kindly informed me that he has proved this conjecture and the result will be included in his article "Euler's Partition Identity and Two Problems of George Beck" which will appear in The Mathematics Student, 86, Nos. 1-2, January - June (2017). - George Beck, Apr 23 2017
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..15866 (terms 0..10000 from Alois P. Heinz)
George E. Andrews, Euler's Partition Identity and Two Problems of George Beck, The Mathematics Student, 86, 1-2:115-119 (2017); Preprint.
Cristina Ballantine and Richard Bielak, Combinatorial proofs of two Euler type identities due to Andrews, arXiv:1803.06394 [math.CO], 2018.
Cristina Ballantine and Amanda Welch, Beck-type identities for Euler pairs of order $r$, arXiv:2006.02335 [math.NT], 2020.
Cristina Ballantine, Hannah Burson, William Craig, Amanda Folsom, and Boya Wen, Hook length biases and general linear partition inequalities, arXiv:2303.16512 [math.CO], 2023.
Cristina Ballantine and Amanda Welch, Beck-type identities: new combinatorial proofs and a theorem for parts congruent to t mod r, arXiv:2011.08220 [math.CO], 2020.
Cristina Ballantine and Amanda Welch, Beck-type companion identities for Franklin's identity, arXiv:2101.06260 [math.CO], 2021.
Cristina Ballantine and Amanda Welch, Beck-type identities: new combinatorial proofs and a modular refinement, Ramanujan J. (2021).
Cristina Ballantine, Hannah Burson, William Craig, Amanda Folsom, and Boya Wen, Hook length bias in odd versus distinct partitions, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #39.
Shishuo Fu and Dazhao Tang, Generalizing a partition theorem of Andrews, arXiv:1705.05046 [math.CO], 2017.
Runqiao Li and Andrew Y. Z. Wang, The dual form of Beck type identities, Ramanujan J. (2021).
Aritro Pathak, On certain partition bijections related to Euler's partition problem, arXiv:2004.03596 [math.CO], 2020. Also Discrete Mathematics 345.2 (2022): 112673.
FORMULA
G.f.: Sum_{k>=1} x^{3k}/(1+x^k)*Product_{i>=1} (1+x^i).
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = 3^(1/4) * (2*log(2) - 1) / (4*Pi) = 0.040456547528... - Vaclav Kotesovec, May 24 2018
EXAMPLE
a(9) = 4 because we have [2,2,2,3], [3,3,3], [1,1,1,2,4], and [1,1,1,6].
MAPLE
g := add(x^(3*k)/(1+x^k), k = 1 .. 100)*mul(1+x^i, i = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, m), m = 0 .. 75);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n>i*(i+5-4*t)/2, 0,
`if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
`if`(t=1 or 3*i>n, 0, b(n-3*i, i-1, 1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 28 2015
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 5 - 4*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t] + If[t == 1 || 3*i > n, 0, b[n - 3*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 11 2016, after Alois P. Heinz *)
Take[ CoefficientList[ Expand[ Sum[x^(3k)/(1 + x^k), {k, 60}] Product[1 + x^i, {i, 60}]], x], 60] (* slower than above *) (* Robert G. Wilson v, Apr 24 2017 *)
PROG
(PARI) x='x + O('x^54); concat([0, 0, 0], Vec(sum(k=1, 54, x^(3*k)/(1 + x^k)* prod(i=1, 54, 1 + x^i)))) \\ Indranil Ghosh, Apr 24 2017
CROSSREFS
Column k=3 of A266477.
Sequence in context: A096575 A002722 A261610 * A336032 A093393 A341095
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 28 2015
STATUS
approved