login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265250
Number of partitions of n having no parts strictly between the smallest and the largest part (n>=1).
5
1, 2, 3, 5, 7, 10, 13, 17, 20, 26, 29, 35, 39, 48, 48, 60, 61, 74, 73, 87, 86, 106, 99, 120, 112, 140, 130, 155, 143, 176, 159, 194, 180, 216, 186, 240, 209, 258, 234, 274, 243, 308, 261, 325, 289, 348, 297, 383, 314, 392, 356, 423, 355, 460, 372, 468, 422
OFFSET
1,2
LINKS
Jonathan Bloom, Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
FORMULA
a(n) = A265249(n,0).
G.f.: G(x) = Sum_{i>=1} x^i/(1-x^i) + Sum_{i>=1} Sum_{j>=i+1} x^(i+j)/ ((1-x^i)*(1-x^j)).
a(n) = A116608(n,1) + A116608(n,2) = A000005(n) + A002133(n). - Seiichi Manyama, Sep 14 2023
EXAMPLE
a(3) = 3 because we have [3], [1,2], [1,1,1] (all partitions of 3).
a(6) = 10 because we have all A000041(6) = 11 partitions of 6 except [1,2,3].
a(7) = 13 because we have all A000041(7) = 15 partitions of 7 except [1,2,4] and [1,1,2,3].
MAPLE
g := add(x^i/(1-x^i), i = 1 .. 80)+add(add(x^(i+j)/((1-x^i)*(1-x^j)), j = i+1..80), i=1..80): gser := series(g, x=0, 60): seq(coeff(gser, x, n), n=1..50);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
`if`(t=1, `if`(irem(n, i)=0, 1, 0)+b(n, i-1, t),
add(b(n-i*j, i-1, t-`if`(j=0, 0, 1)), j=0..n/i))))
end:
a:= n-> b(n$2, 2):
seq(a(n), n=1..100); # Alois P. Heinz, Jan 01 2016
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, If[t == 1, If[Mod[n, i] == 0, 1, 0] + b[n, i - 1, t], Sum[b[n - i*j, i - 1, t - If[j == 0, 0, 1]], {j, 0, n/i}]]]]; a[n_] := b[n, n, 2]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Emeric Deutsch, Dec 25 2015
STATUS
approved