login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265248
Sum of the 2nd smallest parts of all the partitions of n (2nd smallest part is defined to be 0 when the partition does not have at least 2 distinct parts).
2
0, 0, 2, 5, 14, 22, 43, 63, 97, 140, 201, 266, 371, 492, 638, 837, 1079, 1377, 1748, 2207, 2756, 3471, 4287, 5317, 6537, 8081, 9840, 12069, 14643, 17837, 21543, 26113, 31385, 37877, 45318, 54433, 64944, 77682, 92341, 109995, 130373, 154769, 182866, 216350, 254905, 300648, 353259, 415392, 486843, 570867
OFFSET
1,3
COMMENTS
a(n) = Sum_{k>=0} k*A265247(n,k).
LINKS
FORMULA
G.f.: G(x) = Sum_{i>=1} x^i/(1-x^i)*Sum_{j>=i+1} j*x^j/Product_{k>=j}(1-x^k).
EXAMPLE
a(4) = 5 because in [4], [3,1], [2,2], [2,1,1], [1,1,1,1] the 2nd smallest parts are 0,3,0,2,0, respectively.
MAPLE
g := add(x^i*add(j*x^j/mul(1-x^k, k = j .. 100), j = i+1 .. 100)/(1-x^i), i = 1 .. 100): gser := series(g, x = 0, 60): seq(coeff(gser, x, n), n = 1 .. 50);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0],
`if`(i>n, 0, add((p-> `if`(t=1, p+[0, i*p[1]], p))(
b(n-i*j, i+1, min(t+1, 2))), j=1..n/i)+b(n, i+1, t)))
end:
a:= n-> b(n, 1, 0)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 31 2015
MATHEMATICA
Table[Total@ Flatten@ Map[Take[DeleteDuplicates@ #, {-2}] &, Select[IntegerPartitions@ n, Total@ Differences@ # != 0 && Length@ # >= 2 &]], {n, 50}] (* Michael De Vlieger, Dec 24 2015 *)
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0},
If[i > n, {0, 0}, Sum[If[t == 1, # + {0, i*#[[1]]}, #]&[
b[n - i*j, i+1, Min[t+1, 2]]], {j, 1, n/i}] + b[n, i+1, t]]];
a[n_] := b[n, 1, 0][[2]];
Array[a, 50] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A265247.
Sequence in context: A216669 A015633 A176191 * A131661 A321287 A076664
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 24 2015
STATUS
approved