OFFSET
1,3
COMMENTS
a(n) = Sum_{k>=0} k*A265247(n,k).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
G.f.: G(x) = Sum_{i>=1} x^i/(1-x^i)*Sum_{j>=i+1} j*x^j/Product_{k>=j}(1-x^k).
EXAMPLE
a(4) = 5 because in [4], [3,1], [2,2], [2,1,1], [1,1,1,1] the 2nd smallest parts are 0,3,0,2,0, respectively.
MAPLE
g := add(x^i*add(j*x^j/mul(1-x^k, k = j .. 100), j = i+1 .. 100)/(1-x^i), i = 1 .. 100): gser := series(g, x = 0, 60): seq(coeff(gser, x, n), n = 1 .. 50);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0],
`if`(i>n, 0, add((p-> `if`(t=1, p+[0, i*p[1]], p))(
b(n-i*j, i+1, min(t+1, 2))), j=1..n/i)+b(n, i+1, t)))
end:
a:= n-> b(n, 1, 0)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 31 2015
MATHEMATICA
Table[Total@ Flatten@ Map[Take[DeleteDuplicates@ #, {-2}] &, Select[IntegerPartitions@ n, Total@ Differences@ # != 0 && Length@ # >= 2 &]], {n, 50}] (* Michael De Vlieger, Dec 24 2015 *)
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0},
If[i > n, {0, 0}, Sum[If[t == 1, # + {0, i*#[[1]]}, #]&[
b[n - i*j, i+1, Min[t+1, 2]]], {j, 1, n/i}] + b[n, i+1, t]]];
a[n_] := b[n, 1, 0][[2]];
Array[a, 50] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 24 2015
STATUS
approved