login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336032
Number of compositions of n such that the set of parts and the set of multiplicities of parts are disjoint.
2
1, 0, 2, 2, 2, 4, 6, 6, 14, 34, 79, 159, 227, 429, 727, 1146, 1999, 3238, 5018, 8976, 14977, 24768, 38400, 70678, 152535, 295493, 617675, 1404099, 3023086, 6685876, 14230031, 30218806, 62175519, 127820798, 257285277, 516574751, 1021334631, 2009999405, 3917878730
OFFSET
0,3
MAPLE
b:= proc(n, i, p, f, g) option remember; `if`(f intersect g<>{}, 0,
`if`(n=0, p!, `if`(i<1, 0, add(b(n-i*j, i-1, p+j, `if`(j=0,
f, {f[], i}), `if`(j=0, g, {g[], j}))/j!, j=0..n/i))))
end:
a:= n-> b(n$2, 0, {}$2):
seq(a(n), n=0..32);
MATHEMATICA
b[n_, i_, p_, f_, g_] := b[n, i, p, f, g] = If[f ~Intersection~ g != {}, 0,
If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j,
If[j == 0, f, Union@Append[f, i]],
If[j == 0, g, Union@Append[g, j]]]/j!, {j, 0, n/i}]]]];
a[n_] := b[n, n, 0, {}, {}];
Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Apr 13 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A002722 A261610 A265251 * A093393 A341095 A090858
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 07 2020
STATUS
approved