login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p+2 is a semiprime.
19

%I #44 Nov 02 2023 12:32:41

%S 2,7,13,19,23,31,37,47,53,67,83,89,109,113,127,131,139,157,167,181,

%T 199,211,233,251,257,263,293,307,317,337,353,359,379,389,401,409,443,

%U 449,467,479,487,491,499,503,509,541,557,563,571,577,587,631,647,653,677

%N Primes p such that p+2 is a semiprime.

%C Primes of the form p*q - 2, where p and q are primes.

%C Union of A049002 and A115093. - _T. D. Noe_, Mar 01 2006

%D J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16 (1973), 157-176.

%H K. D. Bajpai, <a href="/A063637/b063637.txt">Table of n, a(n) for n = 1..14190</a> (first 1000 terms from T. D. Noe)

%H P. Pollack, <a href="http://www.math.dartmouth.edu/~ppollack/notes.pdf">Analytic and Combinatorial Number Theory</a> Course Notes, p. 146. [?Broken link]

%H P. Pollack, <a href="http://alpha01.dm.unito.it/personalpages/cerruti/ac/notes.pdf">Analytic and Combinatorial Number Theory</a> Course Notes, p. 146.

%H T. Tao, <a href="http://arXiv.org/abs/math.NT/0505402">Obstructions to uniformity and arithmetic patterns in the primes</a>, arXiv:math/0505402 [math.NT], 2005.

%F a(n) = A062721(n) - 2.

%F A010051(a(n)) * A064911(a(n) + 2) = 1. - _Reinhard Zumkeller_, Nov 15 2011

%e From _K. D. Bajpai_, Sep 06 2014: (Start)

%e a(3) = 13, which is prime, and 13 + 2 = 15 = 3 * 5, which is a semiprime.

%e a(4) = 19, which is prime, and 19 + 2 = 21 = 3 * 7, which is a semiprime.

%e (End)

%p select(t -> isprime(t) and numtheory:-bigomega(t+2)=2, [2, seq(2*i+1,i=1..500)]); # _Robert Israel_, Sep 07 2014

%t f[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[ n]]; Select[ Prime[ Range[ 123]], f[ # + 2] == 2 &] (* _Robert G. Wilson v_, Apr 30 2005 *)

%t Select[Prime[Range[500]],PrimeOmega[#+2]==2&] (* _K. D. Bajpai_, Sep 06 2014 *)

%o (PARI) { n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p + 2) == 2, write("b063637.txt", n++, " ", p); if (n==1000, break)) ) } \\ _Harry J. Smith_, Aug 26 2009

%o (Haskell)

%o a063637 n = a063637_list !!(n-1)

%o a063637_list = filter ((== 1) . a064911 . (+ 2)) a000040_list

%o -- _Reinhard Zumkeller_, Nov 15 2011

%Y Cf. A005383, A001358, A063638.

%Y Cf. A109611 (Chen primes).

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Jul 21 2001