login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104452 Number of groups of order <= n all of whose subgroups are normal. 3

%I

%S 1,2,3,5,6,7,8,12,14,15,16,18,19,20,21,27,28,30,31,33,34,35,36,40,42,

%T 43,46,48,49,50,51,59,60,61,62,66,67,68,69,73,74,75,76,78,80,81,82,88,

%U 90,92,93,95,96,99,100,104,105,106,107,109,110,111,113,125,126,127

%N Number of groups of order <= n all of whose subgroups are normal.

%D R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.

%D J. C. Lennox, S. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

%H B. Horvat, G. Jaklic and T. Pisanski, <a href="https://arxiv.org/abs/math/0503183">On the number of Hamiltonian groups</a>, arXiv:math/0503183 [math.CO], 2005.

%H T. Pisanski and T.W. Tucker, <a href="https://doi.org/10.1016/0012-365X(89)90173-8">The genus of low rank hamiltonian groups</a>, Discrete Math. 78 (1989), 157-167.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AbelianGroup.html">Abelian Group</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianGroup.html">Hamiltonian Group</a>

%t orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfAbelianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[a, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfAllGroupsOfOrderLEQThanN[n_]:=numberOfAbelianGroupsOfOrderLEQThanN[n] +numberOfHamiltonianGroupsOfOrderLEQThanN[n];

%Y Cf. A000688, A063966, A104488, A104407, A104404, A104453.

%K nonn,easy

%O 1,2

%A Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), _Tomaz Pisanski_, Apr 19 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 04:57 EST 2020. Contains 331291 sequences. (Running on oeis4.)