login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286875
If n = Product (p_j^k_j) then a(n) = Sum (k_j >= 2, p_j^k_j).
2
0, 0, 0, 4, 0, 0, 0, 8, 9, 0, 0, 4, 0, 0, 0, 16, 0, 9, 0, 4, 0, 0, 0, 8, 25, 0, 27, 4, 0, 0, 0, 32, 0, 0, 0, 13, 0, 0, 0, 8, 0, 0, 0, 4, 9, 0, 0, 16, 49, 25, 0, 4, 0, 27, 0, 8, 0, 0, 0, 4, 0, 0, 9, 64, 0, 0, 0, 4, 0, 0, 0, 17, 0, 0, 25, 4, 0, 0, 0, 16, 81, 0, 0, 4, 0, 0, 0, 8, 0, 9, 0, 4, 0, 0, 0, 32, 0, 49, 9, 29, 0, 0, 0, 8, 0, 0, 0, 31
OFFSET
1,4
COMMENTS
Sum of unitary, proper prime power divisors of n.
FORMULA
a(n) = Sum_{d|n, d = p^k, p prime, k >= 2, gcd(d, n/d) = 1} d.
a(A246547(k)) = A246547(k).
a(A005117(k)) = 0.
Additive with a(p^e) = p^e if e >= 2, and 0 otherwise. - Amiram Eldar, Jul 24 2024
EXAMPLE
a(360) = a(2^3*3^2*5) = 2^3 + 3^2 = 17.
MATHEMATICA
Table[DivisorSum[n, # &, CoprimeQ[#, n/#] && PrimePowerQ[#] && !PrimeQ[#] &], {n, 108}]
f[p_, e_] := If[e == 1, 0, p^e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
PROG
(Python)
from sympy import primefactors, isprime, gcd, divisors
def a(n): return sum(d for d in divisors(n) if gcd(d, n//d)==1 and len(primefactors(d))==1 and not isprime(d))
print([a(n) for n in range(1, 109)]) # Indranil Ghosh, Aug 02 2017
(PARI) A286875(n) = { my(f=factor(n)); for (i=1, #f~, if(f[i, 2] < 2, f[i, 1] = 0)); vecsum(vector(#f~, i, f[i, 1]^f[i, 2])); }; \\ Antti Karttunen, Oct 07 2017
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 02 2017
STATUS
approved