login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n = Product (p_j^k_j) then a(n) = Sum (k_j >= 2, p_j^k_j).
2

%I #25 Jul 25 2024 03:12:27

%S 0,0,0,4,0,0,0,8,9,0,0,4,0,0,0,16,0,9,0,4,0,0,0,8,25,0,27,4,0,0,0,32,

%T 0,0,0,13,0,0,0,8,0,0,0,4,9,0,0,16,49,25,0,4,0,27,0,8,0,0,0,4,0,0,9,

%U 64,0,0,0,4,0,0,0,17,0,0,25,4,0,0,0,16,81,0,0,4,0,0,0,8,0,9,0,4,0,0,0,32,0,49,9,29,0,0,0,8,0,0,0,31

%N If n = Product (p_j^k_j) then a(n) = Sum (k_j >= 2, p_j^k_j).

%C Sum of unitary, proper prime power divisors of n.

%H Antti Karttunen, <a href="/A286875/b286875.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.

%F a(n) = Sum_{d|n, d = p^k, p prime, k >= 2, gcd(d, n/d) = 1} d.

%F a(A246547(k)) = A246547(k).

%F a(A005117(k)) = 0.

%F Additive with a(p^e) = p^e if e >= 2, and 0 otherwise. - _Amiram Eldar_, Jul 24 2024

%e a(360) = a(2^3*3^2*5) = 2^3 + 3^2 = 17.

%t Table[DivisorSum[n, # &, CoprimeQ[#, n/#] && PrimePowerQ[#] && !PrimeQ[#] &], {n, 108}]

%t f[p_, e_] := If[e == 1, 0, p^e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Jul 24 2024 *)

%o (Python)

%o from sympy import primefactors, isprime, gcd, divisors

%o def a(n): return sum(d for d in divisors(n) if gcd(d, n//d)==1 and len(primefactors(d))==1 and not isprime(d))

%o print([a(n) for n in range(1, 109)]) # _Indranil Ghosh_, Aug 02 2017

%o (PARI) A286875(n) = { my(f=factor(n)); for (i=1, #f~, if(f[i, 2] < 2, f[i, 1] = 0)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ _Antti Karttunen_, Oct 07 2017

%Y Cf. A005117, A008475, A222416, A023888, A023889, A034448, A063956, A077610, A092261, A246547, A284117.

%K nonn,easy

%O 1,4

%A _Ilya Gutkovskiy_, Aug 02 2017