login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081402
a(n) = A008475(n!).
2
0, 2, 5, 11, 16, 30, 37, 149, 221, 369, 380, 1310, 1323, 2389, 2975, 33695, 33712, 72312, 72331, 269439, 282855, 545109, 545132, 4254514, 4269514, 8463974, 9999248, 35167130, 35167159, 71972737, 71972768, 2152347552, 2161914700
OFFSET
1,2
LINKS
Jean-Marie De Koninck and William Verreault, Arithmetic functions at factorial arguments, Publications de l'Institut Mathematique, Vol. 115, No. 129 (2024), pp. 45-76.
FORMULA
From Amiram Eldar, Dec 10 2024: (Start)
a(n) = 2^(n-s_2(n)) + O(sqrt(3)^n)), where s_2(n) = A000120(n).
Sum_{k=1..n} a(k) = 2^(n+O(log(n))).
Both formulas from De Koninck and Verreault (2024, pp. 51-52, eq. (3.10) and (3.16)). (End)
EXAMPLE
a(1) = 0 since 1! = 1 has no prime factor.
a(8) = 2^7 + 3^2 + 5 + 7 = 149 since 8! = 2^7*3^2*5*7.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}]; supo[x_] := Apply[Plus, ba[x]^ep[x]]; Table[supo[w], {w, 1, 25}]
PROG
(PARI) a(n) = my(f=factor(n!)); sum(k=1, #f~, f[k, 1]^f[k, 2]); \\ Michel Marcus, Jul 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 31 2003
STATUS
approved