OFFSET
1,3
COMMENTS
As A056239 is fully additive sequence, this sequence gives its partial sums. - Antti Karttunen, Jun 28 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = Sum(k*e(k)) where k runs through indices of prime factors of n!, while e(k) is the exponent of the corresponding prime factor.
EXAMPLE
n=8: 8! = 40320 = 2*2*2*2*2*2*2*3*3*5*7, p-indices = {1,2,3,4}, exponents = {7,2,1,1}; a(8) = 1*7 + 2*2 + 3*1 + 4*1 = 7 + 4 + 3 + 4 = 18.
MAPLE
a:= n-> add (numtheory[pi](i[1])*i[2], i=ifactors(n!)[2]):
seq (a(n), n=1..100); # Alois P. Heinz, Aug 09 2012
MATHEMATICA
Array[Total[FactorInteger[#!] /. {p_, c_} /; p > 0 :> PrimePi[p] c] &, 59] (* Michael De Vlieger, Jun 26 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 31 2003
STATUS
approved