login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013459
Expansion of e.g.f. exp(arctan(x) - log(x+1)).
1
1, 0, 1, -4, 9, -40, 385, -2700, 15505, -145360, 1886625, -19796500, 190881625, -2654379000, 44269902625, -625468889500, 8553276590625, -156119043652000, 3194978818578625, -57041478987070500
OFFSET
0,4
LINKS
FORMULA
From Robert Israel, Jan 29 2018: (Start)
E.g.f.: exp(arctan(x) - log(x+1)).
(n+1)^2*(n+2)*a(n)+n*(n+2)*a(n+1)+(n+2)*a(n+2)+a(n+3) = 0. (End)
MAPLE
f:= gfun:-rectoproc({(n+1)^2*(n+2)*a(n)+n*(n+2)*a(n+1)+(n+2)*a(n+2)+a(n+3) = 0, a(0)=1, a(1)=0, a(2)=1}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Jan 29 2018
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[ArcTan[x]-Log[x+1]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 03 2011 *)
PROG
(PARI) a(n)=polcoeff(exp(atan(x))/(1+x), n)*n! \\ Jaume Oliver Lafont, Oct 24 2009
CROSSREFS
Sequence in context: A073414 A085110 A374939 * A041229 A042887 A053908
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Edited by Robert Israel, Jan 29 2018
STATUS
approved