login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145439
Decimal expansion of Sum_{k>=0} binomial(4*k, 2*k)/2^(6*k).
4
1, 1, 1, 5, 3, 5, 5, 0, 7, 1, 6, 5, 0, 4, 1, 0, 5, 4, 0, 7, 6, 7, 0, 5, 8, 3, 7, 4, 5, 5, 5, 8, 3, 0, 9, 3, 7, 9, 4, 5, 8, 2, 7, 1, 8, 4, 4, 6, 4, 5, 8, 5, 7, 2, 4, 6, 6, 0, 4, 5, 5, 2, 9, 6, 8, 7, 0, 5, 2, 6, 3, 0, 2, 1, 4, 0, 6, 0, 6, 0, 2, 3, 8, 4, 8, 5, 0, 3, 6, 7, 2, 6, 8
OFFSET
1,4
REFERENCES
Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, 1996, 4.1.49.
FORMULA
Equals (1+A020760)*A010503.
Equals A020763 + A010503. - Artur Jasinski, Dec 20 2020
The minimal polynomial is 9*x^4 - 12*x^2 + 1. - Joerg Arndt, Sep 20 2023
Equals 2F1(1/4,3/4; 1/2; 1/4). - R. J. Mathar, Aug 02 2024
Equals Product_{k>=1} (1 - (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024
EXAMPLE
1.11535507165041054076705837455583093794582718446458...
MAPLE
1/2*(1+1/3*3^(1/2))*2^(1/2);
MATHEMATICA
RealDigits[1/Sqrt[2] + 1/Sqrt[6], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
PROG
(PARI) 1/sqrt(6) + 1/sqrt(2) \\ Michel Marcus, Jan 15 2021
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Feb 08 2009
EXTENSIONS
Typo in definition corrected by R. J. Mathar, Feb 09 2009
STATUS
approved