login
A145439
Decimal expansion of Sum_{k>=0} binomial(4*k, 2*k)/2^(6*k).
4
1, 1, 1, 5, 3, 5, 5, 0, 7, 1, 6, 5, 0, 4, 1, 0, 5, 4, 0, 7, 6, 7, 0, 5, 8, 3, 7, 4, 5, 5, 5, 8, 3, 0, 9, 3, 7, 9, 4, 5, 8, 2, 7, 1, 8, 4, 4, 6, 4, 5, 8, 5, 7, 2, 4, 6, 6, 0, 4, 5, 5, 2, 9, 6, 8, 7, 0, 5, 2, 6, 3, 0, 2, 1, 4, 0, 6, 0, 6, 0, 2, 3, 8, 4, 8, 5, 0, 3, 6, 7, 2, 6, 8
OFFSET
1,4
REFERENCES
Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, 1996, 4.1.49.
FORMULA
Equals (1+A020760)*A010503.
Equals A020763 + A010503. - Artur Jasinski, Dec 20 2020
The minimal polynomial is 9*x^4 - 12*x^2 + 1. - Joerg Arndt, Sep 20 2023
Equals 2F1(1/4,3/4; 1/2; 1/4). - R. J. Mathar, Aug 02 2024
Equals Product_{k>=1} (1 - (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024
EXAMPLE
1.11535507165041054076705837455583093794582718446458...
MAPLE
1/2*(1+1/3*3^(1/2))*2^(1/2);
MATHEMATICA
RealDigits[1/Sqrt[2] + 1/Sqrt[6], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
PROG
(PARI) 1/sqrt(6) + 1/sqrt(2) \\ Michel Marcus, Jan 15 2021
CROSSREFS
KEYWORD
cons,easy,nonn,changed
AUTHOR
R. J. Mathar, Feb 08 2009
EXTENSIONS
Typo in definition corrected by R. J. Mathar, Feb 09 2009
STATUS
approved