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We will examine variations of four famous arithmetical functions. For a given

function , let ∗ denote its unitary analog, ̃ its square-free analog, and 0 its
unitary square-free analog. The meanings of these phrases will be made clear in each

case. At the end, the infinitary analog ∞ will appear as well.

0.1. Divisor Function. If () is the number of distinct divisors of , then

X
=1

() =  ln() + (2 − 1) +(
√
)

as  → ∞, where  is the Euler-Mascheroni constant. Let us introduce a more

refined notion of divisibility. A divisor  of  is unitary if  and  are coprime,

that is, if gcd( ) = 1. This condition is often written as ||. The number ∗()
of unitary divisors of  is 2(), where () is the number of distinct prime factors

of . This fact is easily seen to be true: If 11 
2
2 · · ·  is the prime factorization of

, then the unitary divisors of  are of the form 111 222 · · ·  , where each  is

either 0 or 1. There are 2 possible choices for the -tuple (1 2     ); hence the

result follows. We have [1, 2, 3, 4, 5]

X
=1

∗() =
6

2
 ln() +

6

2

µ
2 − 1− 12

2
 0(2)

¶
 +(

√
)

where () is the Riemann zeta function and  0() is its derivative.
A divisor  of  is square-free if  is divisible by no square exceeding 1. The

number ̃() of square-free divisors of  is also 2(); the divisors in this case are

of the form 11 
2
2 · · ·  . Therefore the same asymptotics apply for ̃(), but the

underlying sets of numbers overlap only somewhat [6].

Define 0() to be the number of unitary square-free divisors of . A more com-
plicated asymptotic formula arises here [7, 8]:

X
=1

0() =
6

2
 ln() +

6

2

µ
2 − 1− 12

2
 0(2) +

¶
 +(

√
 ln())
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where

 =
Y


µ
1− 1

(+ 1)

¶
= 07044422009  =

X


(2+ 1) ln()

(+ 1)(2 + − 1)

and we agree that the product and sum extend over all primes . The constant  is

the same as what is called 26 in [9].

We finally give corresponding reciprocal sums [10, 11, 12]:

lim
→∞

p
ln()



X
=1

1

()
=

1√


Y


p
(− 1) ln

µ


− 1
¶
=
09692769438√



lim
→∞

p
ln()



X
=1

1

∗()
=

1√


Y


s
1 +

1

4(− 1) =
10969831191√



The former sum was mentioned in [13] with regard to the arcsine law for random

divisors. It is not known what constant emerges for 10().

0.2. Sum-of-Divisors Function. If () is the sum of all distinct divisors of ,

then
X
=1

() =
2

12
2 +( ln())

as  → ∞. Let ∗() be the sum of unitary divisors of  and ̃() be the sum

of square-free divisors of . Although ∗() = ̃() always, it is usually false that

∗() = ̃() [14]. We have [15, 16, 17, 18]

lim
→∞

1

2

X
=1

∗() =
2

12(3)
 lim

→∞
1

2

X
=1

̃() =
1

2


Further, if 0() is the sum of unitary square-free divisors of , then [15]

lim
→∞

1

2

X
=1

0() =
1

2

Y


µ
1− 1

2(+ 1)

¶
=
08815138397

2


a constant which appeared in [19] and turns out to be connected with class number

theory [20, 21, 22].

Corresponding reciprocal sums are [23, 24]

X
=1

1

()
∼ 1 ln() + 1( + 2)

X
=1

1

∗()
∼ 3 ln() + 3( + 4 − 5)
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where

1 =
Y


() 2 =
X


(− 1)2() ln()
 ()



3 =
Y


Ã
1− 

− 1
∞X
=1

1

( + 1)

!
 4 =

X


Ã
 () ln()

− 1
∞X
=1



(+1 + 1)

!


5 =
X


Ã
() ln()

2

∞X
=0

1

(+1 + 1)

!
 () = 1− (− 1)

2



∞X
=1

1

( − 1)(+1 − 1) 

() =

∞X
=1



( − 1)(+1 − 1)  () = 1− 

− 1
∞X
=1

1

(+1 + 1)


No one seems to have examined 1̃() or 10() yet.

0.3. Totient Function. If () is the number of positive integers  ≤  satisfying

gcd( ) = 1, then [25, 26]

X
=1

() =
3

2
2 +( ln())

as  → ∞. Define gcd∗( ) to be the greatest divisor of  that is also a unitary
divisor of . Let ∗() be the number of positive integers  ≤  satisfying gcd∗( ) =
1. Since gcd∗ is never larger than gcd, it follows that 

∗ is at least as large as . Also
let ̃() be the number of positive square-free integers  ≤  satisfying gcd( ) = 1.

We have [15, 27]

lim
→∞

1

2

X
=1

∗() =
1

2
 lim

→∞
1

2

X
=1

̃() =
3

2


where  is as defined earlier. The case for 0() remains open.
Corresponding reciprocal sums are [23, 24, 28]

X
=1

1

()
∼ 1 ln() + 1( − 2)

X
=1

1

∗()
∼ 3 ln() + 3( − 4 + 5 + 6)

where

1 =
315(3)

24
 2 =

X


ln()

2 − + 1
 3 =

Y


()
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4 =
X


Ã
(− 1) ln()

 ()

∞X
=1



( − 1)

!


5 =
X


ln()

2(− 1)()  6 =
X


() ln()

2 ()


() = 1 +
− 1


∞X
=1

1

( − 1)  () =

∞X
=1

1

(+1 − 1) 

0.4. Square-Free Core Function. If ̃() is the maximal square-free divisor of

 (also called [9] the square-free kernel of ), then [15, 17, 18, 29, 30, 31]

X
=1

̃() =


2
2 +

¡
32

¢
as  → ∞, where  is as before. Assuming the Riemann hypothesis, the error

term can be improved to (75+) for any   0. If 0() is the maximal unitary
square-free divisor of , then [30, 31]

X
=1

0() =


2
2 +

¡
32

¢
where

 =
Y


µ
1− 2 + − 1

3(+ 1)

¶
= 06496066993

0.5. Infinitary Arithmetic. We continue refining the notion of divisibility [32,

33]. A divisor  of  is biunitary if the greatest common unitary divisor of  and

 is 1, and triunitary if the greatest common biunitary divisor of  and  is 1.

More generally, for any positive integer , a divisor  of  is -ary if the greatest

common ( − 1)-ary divisor of  and  is 1. We write |. Clearly 1| and
|.
When introducing infinitary divisors, it is best to start with prime powers. Let 

be a prime, and let  ≥ 0,  ≥ 1 be integers. It can be proved that, for any ≥ −1,
| if and only if |−1. Thus we define |∞ if |−1. For fixed , the

number of integers 0 ≤  ≤  satisfying |∞ is 2(), where () is the number
of ones in the binary expansion of . Define as well 1|∞1. The sum

P−1
=0 2

() is

approximately ln(3) ln(2) but is not well behaved asymptotically [34].

We now allow  to be arbitrary. A divisor  of  is infinitary if, for any prime ,

the conditions || and || imply that |∞. We write |∞. Clearly 1|∞ and
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|∞. Each   1 has a unique factorization as a product of distinct elements from

the set

 =
n
2



:  is prime and  ≥ 0
o
;

each element of  in this product is called an -component of . It follows that |∞
if and only if every -component of  is also an -component of .

Assume that  = 12 · · ·, where 1  2  · · ·   are the -components of

. The infinitary analogs of the functions  and  are defined by [35, 36]

∞() = 2 ∞() =
Y

=1

( + 1)

for   1; otherwise ∞(1) = ∞(1) = 1. Two infinitary analogs of the function 

are known:

∞() = the number of positive integers  ≤  satisfying gcd∞( ) = 1;

̂∞() =
Y

=1

( − 1) = 

Y
=1

µ
1− 1



¶
for   1 ̂∞(1) = 1

It is generally untrue that ∞() = ̂∞(). No similar extension of the function ̃ is

known. Cohen & Hagis [35, 37] proved that

lim
→∞

1

2

X
=1

∞() =


2
= 07307182421

lim
→∞

1

2

X
=1

̂∞() =


2
= 03289358388

1

2

X
=1

∞() ∼  ln() + ∼ 2(03666252769) ln()

where

 =
Y
∈

µ
1 +

1

 ( + 1)

¶
  =

Y
∈

µ
1− 1

 ( + 1)

¶
  =

Y
∈

µ
1− 1

( + 1)2

¶
but no such expression for  yet exists. It is known that ∞() = 2∞()+()

for any   0; reciprocal sums involving ∞, ∞ and ̂∞ also remain open. Alternative
generalizations of unitary divisor have been given [38, 39] but won’t be discussed here.
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0.6. Addendum. The constant , which is associated with counting unitary

square-free divisors of , was evaluated in [40] to be 07483723334. The seriesP
≤ 1() connected with (05468559552) ln()

−12 was mentioned in [41, 42],
as well as a numerical value 06728 for 1. Other values of ,  remain open. An

analog of 0(), corresponding to unitary cube-free divisors of , can be studied [8, 40].
The probability that  randomly chosen integers are unitary coprime is [43]

Y


µ
1− (− 1)

( − 1)
¶


The probability that they are pairwise unitary coprime is more complicated: for

instance, it is

(2)(3)
Y


µ
1− 4

2
+
7

3
− 9

4
+
8

5
− 2

6
− 3

7
+
2

8

¶
when  = 3 and

(2)2(3)(4)
Y


µ
1− 8

2
+
3

3
+
27

4
− 24

5
− 14

6
− 3

7

+
37

8
− 30

9
+
42

10
− 33

11
− 41

12
+
78

13
− 44

14
+
9

15

¶
when  = 4. Expressions for arbitrary  appear in [43].
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