login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254767
a(n) is the least k > n such that k*n is a cube.
4
8, 4, 9, 16, 25, 36, 49, 27, 24, 100, 121, 18, 169, 196, 225, 32, 289, 96, 361, 50, 441, 484, 529, 72, 40, 676, 64, 98, 841, 900, 961, 54, 1089, 1156, 1225, 48, 1369, 1444, 1521, 200, 1681, 1764, 1849, 242, 75, 2116, 2209, 288, 56, 160, 2601, 338, 2809, 108
OFFSET
1,1
COMMENTS
a(n) <= n^2 for all n > 1 because n * n^2 = n^3.
EXAMPLE
a(12) = 18 because 12*18 = 6^3 (and 12*13, 12*14, 12*15, 12*16, 12*17 are not perfect cubes).
MATHEMATICA
f[n_] := Block[{k = n + 1}, While[! IntegerQ@ Power[k n, 1/3], k++]; k]; Array[f, 54] (* Michael De Vlieger, Mar 17 2015 *)
PROG
(Ruby)
def a(n)
min = (n**(2/3.0)).ceil
(min..n+1).each { |i| return i**3/n if i**3 % n == 0 && i**3 > n**2 }
end
(PARI) a(n)=if (n==1, 8, for(k=n+1, n^2, if(ispower(k*n, 3), return(k))))
vector(100, n, a(n)) \\ Derek Orr, Feb 07 2015
(PARI) a(n) = {f = factor(n); for (i=1, #f~, if (f[i, 2] % 3, f[i, 2] = 3 - f[i, 2]); ); cb = factorback(f); cbr = sqrtnint(cb*n, 3); cb = cbr^3; k = cb/n; while((type(k=cb/n) != "t_INT") || (k<=n), cbr++; cb = cbr^3; ); k; } \\ Michel Marcus, Mar 14 2015
CROSSREFS
Cf. A072905 (an analogous sequence for squares).
Cf. A048798 (similar sequence, no restriction that a(n) > n).
Sequence in context: A205184 A105144 A277781 * A194184 A194217 A239971
KEYWORD
nonn,easy
AUTHOR
Peter Kagey, Feb 07 2015
STATUS
approved