login
A205184
Period 12: repeat (1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9).
0
1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8
OFFSET
1,2
COMMENTS
The terms of this sequence are the digital roots of the indices of those nonzero triangular numbers that are also perfect squares (A001108).
FORMULA
G.f.: x*(1+8*x+3*x^2+x^3+3*x^4-x^5+x^6+9*x^7) / ((1-x)*(1+x)*(1+x^2)*(1-sqrt(3)*x+x^2)*(1+sqrt(3)*x+x^2)).
a(n) = a(n-12).
a(n) = 25-a(n-1)-a(n-6)-a(n-7).
a(n) = a(n-2)-a(n-6)+a(n-8).
a(n) = 1/4*(25+(-1)^n*(9+4*sqrt(3)*(cos(n*Pi/6)-cos(5*n*Pi/6))+2*cos(n*Pi/2))).
EXAMPLE
As the fourth nonzero triangular number that is also a perfect square is A000217(288), and 288 has digital root A010888(288)=9, then a(4)=9.
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9}, 86]
LinearRecurrence[{0, 1, 0, 0, 0, -1, 0, 1}, {1, 8, 4, 9, 7, 8, 7, 9}, 86] (* Ray Chandler, Aug 03 2015 *)
PROG
(PARI) a(n)=[9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1][n%12+1] \\ Charles R Greathouse IV, Jul 17 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ant King, Jan 23 2012
STATUS
approved