login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205182
E.g.f.: (cosh(x) + sin(x)) / (cos(x) - sinh(x)).
1
1, 2, 6, 24, 140, 992, 8456, 84224, 957840, 12257792, 174293856, 2726068224, 46514037440, 859790139392, 17115342333056, 365041325441024, 8304761365213440, 200743379109281792, 5137820023434733056, 138802611894431514624, 3947233200665413667840
OFFSET
0,2
COMMENTS
Unsigned version of A013068, which has offset 1.
LINKS
FORMULA
E.g.f.: -log(cos(x) - sinh(x)) = Sum_{n>=1} a(n-1)*x^n/n!.
a(n) ~ n! /r^(n+1), where r = 0.7032906588639654... is the root of the equation cos(r) = sinh(r). - Vaclav Kotesovec, Sep 22 2013
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 24*x^3/3! + 140*x^4/4! + 992*x^5/5! +...
where A(x) = (cosh(x) + sin(x)) / (cos(x) - sinh(x)).
The e.g.f. at offset 1 begins:
B(x) = x + 2*x^2/2! + 6*x^3/3! + 24*x^4/4! + 140*x^5/5! + 992*x^6/6! +...
satisfies exp(B(x)) = 1/(cos(x) - sinh(x)).
MATHEMATICA
CoefficientList[Series[(Cosh[x]+Sin[x])/(Cos[x]-Sinh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 22 2013 *)
Rest[CoefficientList[Series[-Log[Cos[x]-Sinh[x]], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 22 2013 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cosh(X)+sin(X))/(cos(X)-sinh(X)), n)}
CROSSREFS
Cf. A013068.
Sequence in context: A292907 A216507 A366459 * A013068 A326780 A365976
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 22 2012
STATUS
approved