OFFSET
0,2
COMMENTS
Unsigned version of A013068, which has offset 1.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
E.g.f.: -log(cos(x) - sinh(x)) = Sum_{n>=1} a(n-1)*x^n/n!.
a(n) ~ n! /r^(n+1), where r = 0.7032906588639654... is the root of the equation cos(r) = sinh(r). - Vaclav Kotesovec, Sep 22 2013
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 24*x^3/3! + 140*x^4/4! + 992*x^5/5! +...
where A(x) = (cosh(x) + sin(x)) / (cos(x) - sinh(x)).
The e.g.f. at offset 1 begins:
B(x) = x + 2*x^2/2! + 6*x^3/3! + 24*x^4/4! + 140*x^5/5! + 992*x^6/6! +...
satisfies exp(B(x)) = 1/(cos(x) - sinh(x)).
MATHEMATICA
CoefficientList[Series[(Cosh[x]+Sin[x])/(Cos[x]-Sinh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 22 2013 *)
Rest[CoefficientList[Series[-Log[Cos[x]-Sinh[x]], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 22 2013 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cosh(X)+sin(X))/(cos(X)-sinh(X)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 22 2012
STATUS
approved