OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of G(x) / f(-x) = f(-x^2, -x^3) / f(-x)^2 in powers of x where f() is a Ramanujan theta function and G() is a Rogers-Ramanujan function.
G.f. is the limit as n goes to infinity of Sum_{k=0..n} x^k^2 / ((x;x)_k * (x;x)_{n-k}) = Sum_{k=-n..n} (-1)^k * x^(k*(5*k - 1)/2) / ((x;x)_{n-k} * (x;x)_{n+k}).
G.f.: (Sum_{k>=0} x^k^2 / ((1 - x) ... (1 - x^k))) / Product_{k>0} (1 - x^k).
G.f.: (Sum_{k} (-1)^k * x^(k*(5*k - 1)/2)) / Product_{k>0} (1 - x^k)^2.
a(n) ~ exp(Pi*sqrt(14*n/15)) * sqrt(7*phi) / (4*3^(1/2)*5^(3/4)*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 24 2018
EXAMPLE
1 + 2*x + 4*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 35*x^6 + 54*x^7 + 84*x^8 + ...
q^-7 + 2*q^113 + 4*q^233 + 7*q^353 + 13*q^473 + 21*q^593 + 35*q^713 + ...
MATHEMATICA
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[-q^2, -q^3]/QPochhammer[q]^2, {q, 0, 100}], q] (* G. C. Greubel, Apr 14 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 / (1 - x^k)^[ 1, 2, 1, 1, 2][k%5 + 1], 1 + x * O(x^n)), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 23 2012
STATUS
approved