login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205183
Euler transform of period 5 sequence [ 2, 1, 1, 2, 1, ...].
1
1, 2, 4, 7, 13, 21, 35, 54, 84, 126, 188, 273, 396, 562, 794, 1106, 1533, 2099, 2862, 3864, 5194, 6927, 9198, 12131, 15938, 20817, 27087, 35070, 45246, 58114, 74400, 94870, 120602, 152768, 192957, 242928, 305025, 381857, 476839, 593830, 737776
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of G(x) / f(-x) = f(-x^2, -x^3) / f(-x)^2 in powers of x where f() is a Ramanujan theta function and G() is a Rogers-Ramanujan function.
G.f. is the limit as n goes to infinity of Sum_{k=0..n} x^k^2 / ((x;x)_k * (x;x)_{n-k}) = Sum_{k=-n..n} (-1)^k * x^(k*(5*k - 1)/2) / ((x;x)_{n-k} * (x;x)_{n+k}).
G.f.: (Sum_{k>=0} x^k^2 / ((1 - x) ... (1 - x^k))) / Product_{k>0} (1 - x^k).
G.f.: (Sum_{k} (-1)^k * x^(k*(5*k - 1)/2)) / Product_{k>0} (1 - x^k)^2.
Convolution of A000041 and A003114.
a(n) ~ exp(Pi*sqrt(14*n/15)) * sqrt(7*phi) / (4*3^(1/2)*5^(3/4)*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 24 2018
EXAMPLE
1 + 2*x + 4*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 35*x^6 + 54*x^7 + 84*x^8 + ...
q^-7 + 2*q^113 + 4*q^233 + 7*q^353 + 13*q^473 + 21*q^593 + 35*q^713 + ...
MATHEMATICA
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[-q^2, -q^3]/QPochhammer[q]^2, {q, 0, 100}], q] (* G. C. Greubel, Apr 14 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 / (1 - x^k)^[ 1, 2, 1, 1, 2][k%5 + 1], 1 + x * O(x^n)), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 23 2012
STATUS
approved