login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Fibonacci numbers. Square array read by ascending antidiagonals. F(n,k) for n >= 0 and k >= 0.
3

%I #16 Feb 25 2020 16:30:38

%S 1,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,3,3,1,0,1,1,4,4,5,1,0,1,1,5,5,9,8,

%T 1,0,1,1,6,6,14,14,13,1,0,1,1,7,7,20,20,28,21,1,0,1,1,8,8,27,27,48,47,

%U 34,1,0,1,1,9,9,35,35,75,75,89,55,1,0

%N Generalized Fibonacci numbers. Square array read by ascending antidiagonals. F(n,k) for n >= 0 and k >= 0.

%H Genki Shibukawa, <a href="https://arxiv.org/abs/1907.00334">New identities for some symmetric polynomials and their applications</a>, arXiv:1907.00334 [math.CA], 2019.

%F F(n, k) = Sum_{j=0..(n-1)/2} (-1)^j*binomial(n-1-j,j)*F(n, k-1-2*j) + Sum_{j=0..(n-2)/2} (-1)^j*binomial(n-1-j, j+1)*F(n, k-2-2*j) for k > 0; F(n, 0) = 1 and F(n, k) = 0 if k < 0.

%e Array starts:

%e [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e [1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e [2] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

%e [3] 1, 1, 3, 4, 9, 14, 28, 47, 89, 155, 286, 507, ...

%e [4] 1, 1, 4, 5, 14, 20, 48, 75, 165, 274, 571, 988, ...

%e [5] 1, 1, 5, 6, 20, 27, 75, 110, 275, 429, 1001, 1637, ...

%e [6] 1, 1, 6, 7, 27, 35, 110, 154, 429, 637, 1638, 2548, ...

%e [7] 1, 1, 7, 8, 35, 44, 154, 208, 637, 910, 2548, 3808, ...

%e [8] 1, 1, 8, 9, 44, 54, 208, 273, 910, 1260, 3808, 5508, ...

%e [9] 1, 1, 9, 10, 54, 65, 273, 350, 1260, 1700, 5508, 7752, ...

%o (SageMath)

%o @cached_function

%o def F(n, k):

%o if k < 0: return 0

%o if k == 0: return 1

%o a = sum((-1)^j*binomial(n-1-j,j )*F(n,k-1-2*j) for j in (0..(n-1)/2))

%o b = sum((-1)^j*binomial(n-1-j,j+1)*F(n,k-2-2*j) for j in (0..(n-2)/2))

%o return a + b

%o print([F(n-k, k) for n in (0..11) for k in (0..n)])

%Y Cf. A000007 (n=0), A000012 (n=1), A000045 (n=2), A006053 (n=3), A188021 (n=4), A231181 (n=5).

%K nonn,tabl

%O 0,13

%A _Peter Luschny_, Aug 21 2019