OFFSET
0,1
COMMENTS
Diagonal sums give A123108. - Philippe Deléham, Oct 08 2009
LINKS
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A028310(n), A095121(n), A123109(n) for x=0,1,2,3 respectively.
G.f.: (1-x+y*x^2)/(1-(1+y)*x+y*x^2). - Philippe Deléham, Nov 01 2011
From Tom Copeland, Nov 10 2012: (Start)
O.g.f. for row polynomials: 1 + (t/(1-t))*(1/(1-x)-1/(1-x*t)) = 1 + t*x + (t+t^2)*x^2 + ....
E.g.f. for row polynomials: 1 + (t/(1-t))*(e^x-e^(t*x)) = 1 + t*x + (t+t^2)*x^2/2 + .... (End)
a(0) = 1; for n > 0, a(n) = 1 - A010054(n). [As a flat sequence] - Antti Karttunen, Jan 19 2025
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 1, 1, 1;
0, 1, 1, 1, 1, 1;
0, 1, 1, 1, 1, 1, 1;
0, 1, 1, 1, 1, 1, 1, 1;
0, 1, 1, 1, 1, 1, 1, 1, 1;
0, 1, 1, 1, 1, 1, 1, 1, 1, 1;
PROG
(PARI) A123110(n) = (!n || !ispolygonal(n, 3)); \\ Antti Karttunen, Jan 19 2025
CROSSREFS
Essentially the same sequence as A114607.
Also essentially the same as A023532. - R. J. Mathar, Jun 18 2008
After the initial a(0)=1, the characteristic function of A014132.
Cf. A010054.
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Sep 28 2006
STATUS
approved