login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123112
Smallest number k such that k^n is equal to the sum of n consecutive primes, or 1 if it does not exist.
2
2, 6, 11, 12, 3, 18, 81, 90, 81, 942, 1773, 2532, 77, 1866, 637, 126, 1725, 56, 2695, 128, 3647, 6960, 1295, 7180, 10809, 430, 10233, 2944, 3269, 160, 10919, 9068, 40925, 22066, 10763, 558, 1403, 4344, 2943, 8894, 9813, 9308, 4691, 20516, 13801, 8056, 36425
OFFSET
1,1
COMMENTS
Corresponding numbers m such that a(n)^n = Sum[Prime[i],{i,m,m+n-1}] are {1,7,85,689,13,...} (A162160).
MAPLE
isnp := proc(x, n) local xbar, p, psum, i ; xbar := floor(x/n) ; p := array(1..n) ; p[1] := nextprime(xbar) ; for i from 2 to n do p[i] := nextprime(p[i-1]) ; od ; psum := add(p[i], i=1..n) ; while psum >= x do if psum = x then RETURN(true) ; elif p[1] = 2 then RETURN(false) ; else psum := psum-p[n] ; for i from n to 2 by -1 do p[i] := p[i-1] ; od ; p[1] := prevprime(p[1]) ; psum := psum+p[1] ; fi ; od ; RETURN(false) ; end; A123112 := proc(n) local k ; k := 1 ; while true do if isnp(k^n, n) then RETURN(k) ; else k := k+1 ; fi ; od ; end; for n from 1 to 30 do print(A123112(n)) ; od ; # R. J. Mathar, Jan 13 2007
PROG
(PARI) print1(2); for(n=2, 10, k=n%2; until(s==t, k+=2; t=k^n; s=0; q=t\n; p=q+1; for(i=0, n-1, if(s*n<i*t, q=nextprime(q+1); s+=q, p=precprime(p-1); s+=p))); print1(", "k)) \\ Jens Kruse Andersen, Jul 23 2014
CROSSREFS
Cf. A162160.
Sequence in context: A033710 A243157 A274689 * A092189 A228061 A357776
KEYWORD
hard,nonn
AUTHOR
Alexander Adamchuk, Sep 28 2006
EXTENSIONS
More terms from R. J. Mathar, Jan 13 2007
a(17)-a(26) from Max Alekseyev
a(27)-a(43) from Donovan Johnson, Nov 17 2008
a(44)-a(47) from Jens Kruse Andersen, Jul 23 2014
STATUS
approved