login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199248
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^k]* x^n/n ), where A027907 is the triangle of trinomial coefficients.
3
1, 1, 2, 6, 20, 69, 248, 923, 3523, 13706, 54152, 216710, 876607, 3578405, 14722432, 60986158, 254145337, 1064712328, 4481577078, 18943753140, 80381689202, 342254333393, 1461864544896, 6262021627055, 26894816382199, 115792035533779, 499648608539714, 2160504474956390
OFFSET
0,3
COMMENTS
Trinomial coefficients satisfy: Sum_{k=0..2*n} A027907(n,k)*x^k = (1+x+x^2)^n.
FORMULA
G.f. satisfies: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 - x + x^2)*(1 - x^2 + x^4)/(1-x)^2.
G.f.: A(x) = (1/x)*Series_Reversion( x*(1-x)*(1-x^3)*(1-x^4)/(1-x^12) ).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 69*x^5 + 248*x^6 + 923*x^7 +...
such that A(x) = G(x*A(x)) where G(x) is given by:
G(x) = (1 - x + x^2)*(1 - x^2 + x^4)/(1-x)^2 = (1-x^5)/(1-x) + x^3/(1-x)^2:
G(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 7*x^9 +...
...
Let A = x*A(x), then the logarithm of the g.f. A(x) equals the series:
log(A(x)) = (1 + A + A^2)*x +
(1 + 2^2*A + 3^2*A^2 + 2^2*A^3 + A^4)*x^2/2 +
(1 + 3^2*A + 6^2*A^2 + 7^2*A^3 + 6^2*A^4 + 3^2*A^5 + A^6)*x^3/3 +
(1 + 4^2*A + 10^2*A^2 + 16^2*A^3 + 19^2*A^4 + 16^2*A^5 + 10^2*A^6 + 4^2*A^7 + A^8)*x^4/4 +
(1 + 5^2*A + 15^2*A^2 + 30^2*A^3 + 45^2*A^4 + 51^2*A^5 + 45^2*A^6 + 30^2*A^7 + 15^2*A^8 + 5^2*A^9 + A^10)*x^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
PROG
(PARI) {a(n)=local(A=1+x); A=1/x*serreverse(x*(1-x)*(1-x^3)*(1-x^4)/(1-x^12+x*O(x^n))); polcoeff(A, n)}
(PARI) /* G.f. A(x) using the squares of the trinomial coefficients */
{A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k*A^k) *x^m/m)+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2011
STATUS
approved