login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^k]* x^n/n ), where A027907 is the triangle of trinomial coefficients.
3

%I #10 Mar 30 2012 18:37:32

%S 1,1,2,6,20,69,248,923,3523,13706,54152,216710,876607,3578405,

%T 14722432,60986158,254145337,1064712328,4481577078,18943753140,

%U 80381689202,342254333393,1461864544896,6262021627055,26894816382199,115792035533779,499648608539714,2160504474956390

%N G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^k]* x^n/n ), where A027907 is the triangle of trinomial coefficients.

%C Trinomial coefficients satisfy: Sum_{k=0..2*n} A027907(n,k)*x^k = (1+x+x^2)^n.

%F G.f. satisfies: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 - x + x^2)*(1 - x^2 + x^4)/(1-x)^2.

%F G.f.: A(x) = (1/x)*Series_Reversion( x*(1-x)*(1-x^3)*(1-x^4)/(1-x^12) ).

%e G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 69*x^5 + 248*x^6 + 923*x^7 +...

%e such that A(x) = G(x*A(x)) where G(x) is given by:

%e G(x) = (1 - x + x^2)*(1 - x^2 + x^4)/(1-x)^2 = (1-x^5)/(1-x) + x^3/(1-x)^2:

%e G(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 7*x^9 +...

%e ...

%e Let A = x*A(x), then the logarithm of the g.f. A(x) equals the series:

%e log(A(x)) = (1 + A + A^2)*x +

%e (1 + 2^2*A + 3^2*A^2 + 2^2*A^3 + A^4)*x^2/2 +

%e (1 + 3^2*A + 6^2*A^2 + 7^2*A^3 + 6^2*A^4 + 3^2*A^5 + A^6)*x^3/3 +

%e (1 + 4^2*A + 10^2*A^2 + 16^2*A^3 + 19^2*A^4 + 16^2*A^5 + 10^2*A^6 + 4^2*A^7 + A^8)*x^4/4 +

%e (1 + 5^2*A + 15^2*A^2 + 30^2*A^3 + 45^2*A^4 + 51^2*A^5 + 45^2*A^6 + 30^2*A^7 + 15^2*A^8 + 5^2*A^9 + A^10)*x^5/5 +...

%e which involves the squares of the trinomial coefficients A027907(n,k).

%o (PARI) {a(n)=local(A=1+x); A=1/x*serreverse(x*(1-x)*(1-x^3)*(1-x^4)/(1-x^12+x*O(x^n))); polcoeff(A, n)}

%o (PARI) /* G.f. A(x) using the squares of the trinomial coefficients */

%o {A027907(n, k)=polcoeff((1+x+x^2)^n, k)}

%o {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k*A^k) *x^m/m)+x*O(x^n)));polcoeff(A, n)}

%Y Cf. A186236, A199257, A027907.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 04 2011