login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160118
Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).
17
0, 1, 9, 13, 41, 45, 73, 85, 169, 173, 201, 213, 297, 309, 393, 429, 681, 685, 713, 725, 809, 821, 905, 941, 1193, 1205, 1289, 1325, 1577, 1613, 1865, 1973, 2729, 2733, 2761, 2773, 2857, 2869, 2953, 2989, 3241, 3253, 3337, 3373, 3625, 3661, 3913, 4021, 4777, 4789
OFFSET
0,3
COMMENTS
On the infinite square grid, we start at stage 0 with all square cells in the OFF state.
Define a "peninsula cell" to a cell that is connected to the structure by exactly one of its vertices.
At stage 1 we turn ON a single cell in the central position.
For n>1, if n is even, at stage n we turn ON all the OFF neighboring cells from cells that were turned in ON at stage n-1.
For n>1, if n is odd, at stage n we turn ON all the peninsular OFF cells.
For the corresponding corner sequence, see A160796.
An animation will show the fractal-like behavior (cf. A139250).
For the first differences see A160415. - Omar E. Pol, Mar 21 2011
First differs from A188343 at a(13). - Omar E. Pol, Mar 28 2011
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.],
FORMULA
From Nathaniel Johnston, Mar 24 2011: (Start)
a(2n-1) = 9 + 4*Sum_{k=2..n} A147610(k) + 28*Sum_{k=2..n-1} A147610(k), n >= 2.
a(2n) = 9 + 4*Sum_{k=2..n} A147610(k) + 28*Sum_{k=2..n} A147610(k), n >= 1.
(End)
EXAMPLE
If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
9...............9
.888.888.888.888.
.878.878.878.878.
.8866688.8866688.
...656.....656...
.8866444.4446688.
.878.434.434.878.
.888.4422244.888.
.......212.......
.888.4422244.888.
.878.434.434.878.
.8866444.4446688.
...656.....656...
.8866688.8866688.
.878.878.878.878.
.888.888.888.888.
9...............9
In the first generation, only the central "1" is ON, a(1)=1. In the next generation, we turn ON eight "2" around the central cell, leading to a(2)=a(1)+8=9. In the third generation, four "3" are turned ON at the vertices of the square, a(3)=a(2)+4=13. And so on...
MATHEMATICA
With[{d = 2}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 05 2009
EXTENSIONS
Entry revised by Omar E. Pol and N. J. A. Sloane, Feb 16 2010, Feb 21 2010
a(8) - a(38) from Nathaniel Johnston, Nov 06 2010
a(13) corrected at the suggestion of Sean A. Irvine. Then I corrected 19 terms between a(14) and a(38). Finally I added a(39)-a(42). - Omar E. Pol, Mar 21 2011
Rule, for n even, edited by Omar E. Pol, Mar 22 2011
Incorrect comment (in "formula" section) removed by Omar E. Pol, Mar 23 2011, with agreement of author.
More terms from Amiram Eldar, Aug 01 2023
STATUS
approved