login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160796
Total number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton which is the "corner" structure corresponding to A160118.
5
0, 1, 8, 11, 32, 35, 56, 65, 128, 131, 152, 161, 224, 233, 296, 323, 512, 515, 536, 545, 608, 617, 680, 707, 896, 905, 968, 995, 1184, 1211, 1400, 1481, 2048, 2051, 2072, 2081, 2144, 2153, 2216, 2243, 2432, 2441, 2504, 2531, 2720, 2747, 2936, 3017, 3584, 3593, 3656
OFFSET
0,3
COMMENTS
This bears the same relationship to A160118 as A153006 does to A139250.
FORMULA
a(n) = 2 + (3/4)*(A160118(n) - 1) if n >= 2.
EXAMPLE
If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
..9...............9
...888.888.888.888.
...878.878.878.878.
...8866688.8866688.
.....656.....656...
...8866444.4446688.
...878.434.434.878.
...888.4422244.888.
.........212.......
00000000002244.888.
0000000000.434.878.
0000000000.4446688.
0000000000...656...
0000000000.8866688.
0000000000.878.878.
0000000000.888.888.
0000000000........9
0000000000.........
0000000000.........
MATHEMATICA
With[{d = 2}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := (5 + 3 * If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]) / 4; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 13 2009, Jun 14 2009
EXTENSIONS
Entry revised by Omar E. Pol and N. J. A. Sloane, Feb 16 2010
More terms from Nathaniel Johnston, Nov 13 2010
Corrected by Sean A. Irvine, Mar 23 2011, in response to correction to A160118
More terms from Amiram Eldar, Aug 01 2023
STATUS
approved