login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249101
p(n,1), where p(n,x) is defined in Comments; sum of numbers in row n of the array at A249100.
2
1, 4, 9, 37, 118, 525, 2059, 9934, 44937, 233683, 1177360, 6552069, 35986069, 212891932, 1256487933, 7856137825, 49320239614, 324285063489, 2149133929207, 14796251405278, 102910742502765, 739149552929719, 5370132965554144, 40110161953250937
OFFSET
1,2
COMMENTS
The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (2*n - 1)/f(n-1,x), where f(1,x) = 1.
FORMULA
a(n) = a(n-1) + (2*n-1)*a(n-2), a(0) = a(1) = 1. - Michael Somos, Oct 27 2022
EXAMPLE
First 3 rows from A249100:
1;
3, 1;
5, 3, 1;
so that the first 3 terms of A249101 are 1, 4, 9.
MATHEMATICA
z = 11; p[n_, x_] := x + (2 n - 1)/p[n-1, x]; p[1, x_] = 1;
t = Table[Factor[p[n, x]], {n, 1, z}]
u = Numerator[t]; v = u /. x -> 1 (* A249101 *)
a[ n_] := (a[n] = If[n<2, Boole[n>=0], a[n-1] + (2*n-1)*a[n-2]]); (* Michael Somos, Oct 27 2022 *)
PROG
(PARI) {a(n) = if(n<2, n>=0, a(n-1) + (2*n-1)*a(n-2))}; /* Michael Somos, Oct 27 2022 */
CROSSREFS
Cf. A249100.
Sequence in context: A055872 A066924 A251689 * A289157 A149146 A149147
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 21 2014
STATUS
approved