login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: G(F(x)) is a power series in x consisting entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 and F(x) is g.f. of A251690.
4

%I #9 Jan 03 2015 03:28:53

%S 1,1,2,4,8,17,36,78,169,370,813,1793,3971,8817,19631,43804,97938,

%T 219357,492072,1105398,2486320,5598805,12620832,28477139,64311189,

%U 145354456,328772330,744155150,1685434388,3819629781,8661130303,19649713303,44601771038,101285994072,230110466746

%N G.f.: G(F(x)) is a power series in x consisting entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 and F(x) is g.f. of A251690.

%H Paul D. Hanna, <a href="/A251691/b251691.txt">Table of n, a(n) for n = 0..120</a>

%F G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 17*x^5 + 36*x^6 + 78*x^7 + 169*x^8 + 370*x^9 + 813*x^10 + 1793*x^11 + 3971*x^12 +...

%F such that A(x) = G(F(x)), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:

%F G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 +...

%F and F(x) is the g.f. of A251690:

%F F(x) = x - x^2 - 2*x^3 - 2*x^4 - x^6 - 3*x^8 - 3*x^10 - 3*x^11 - 3*x^13 - 2*x^14 - 3*x^15 - x^16 - 2*x^17 - x^19 - 2*x^20 - 2*x^23 - 2*x^27 - 3*x^29 +...

%Y Cf. A251690, A001764.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Dec 31 2014