|
|
A118915
|
|
Primes p such that (p^2 + 5)/6 is prime.
|
|
16
|
|
|
5, 13, 19, 23, 37, 41, 89, 113, 127, 131, 139, 149, 167, 197, 229, 233, 239, 251, 271, 359, 373, 401, 433, 449, 463, 503, 523, 541, 607, 631, 643, 653, 701, 719, 743, 769, 811, 827, 877, 881, 887, 919, 967, 971, 1009, 1013, 1021, 1093, 1097, 1283, 1301
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For all primes q>3, we have q=6k+-1 for some k, which makes it easy to show that 6 divides q^2+5.
(n^2+5)/6 is an integer for all primes except 2 and 3. - Michael B. Porter, Apr 14 2010
|
|
LINKS
|
|
|
PROG
|
(PARI) isA118915(n)=if(n^2%6==1, isprime(n)&&isprime((n^2+5)/6), 0) \\ Michael B. Porter, Apr 14 2010
|
|
CROSSREFS
|
Cf. A109953 (primes p such that (p^2+1)/3 is prime), A118918 (primes p such that (p^2+11)/12 is prime).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|