The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066990 In canonical prime factorization of n replace even exponents with 2 and odd exponents with 1. 2
 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 6, 25, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 6, 55, 14, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = n for cubefree numbers (A004709), whereas a(n) <> n for cube-full numbers (A046099). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Brahim Mittou, New properties of an arithmetic function, Mathematica Montisnigri, Vol LIII (2022). Eric Weisstein's World of Mathematics, Cubefree. FORMULA Multiplicative with a(p^e) = p^(2 - e mod 2), p prime, e>0. Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/30) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 0.4296463408... . - Amiram Eldar, Oct 28 2022 MATHEMATICA fx[{a_, b_}]:={a, If[EvenQ[b], 2, 1]}; Table[Times@@(#[[1]]^#[[2]]&/@(fx/@ FactorInteger[n])), {n, 70}] (* Harvey P. Dale, Jan 01 2012 *) PROG (Haskell) a066990 n = product \$ zipWith (^) (a027748_row n) (map ((2 -) . (`mod` 2)) \$ a124010_row n) -- Reinhard Zumkeller, Dec 02 2012 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2 - f[i, 2]%2)); } \\ Amiram Eldar, Oct 28 2022 CROSSREFS Cf. A004709, A046099. Sequence in context: A043267 A167514 A091733 * A365296 A097449 A104415 Adjacent sequences: A066987 A066988 A066989 * A066991 A066992 A066993 KEYWORD nonn,nice,mult AUTHOR Reinhard Zumkeller, Feb 01 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 05:10 EDT 2024. Contains 371667 sequences. (Running on oeis4.)