login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Cubefree numbers: numbers that are not divisible by any cube > 1.
179

%I #105 Sep 22 2024 03:55:58

%S 1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,28,29,

%T 30,31,33,34,35,36,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,55,57,

%U 58,59,60,61,62,63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83,84,85

%N Cubefree numbers: numbers that are not divisible by any cube > 1.

%C Numbers n such that no smaller number m satisfies: kronecker(n,k)=kronecker(m,k) for all k. - _Michael Somos_, Sep 22 2005

%C The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = A088453. - _Gerard P. Michon_, May 06 2009

%C The Schnirelmann density of the cubefree numbers is 157/189 (Orr, 1969). - _Amiram Eldar_, Mar 12 2021

%C From _Amiram Eldar_, Feb 26 2024: (Start)

%C Numbers whose sets of unitary divisors (A077610) and bi-unitary divisors (A222266) coincide.

%C Number whose all divisors are (1+e)-divisors, or equivalently, numbers k such that A049599(k) = A000005(k). (End)

%H Amiram Eldar, <a href="/A004709/b004709.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)

%H Gérard P. Michon, <a href="http://www.numericana.com/answer/counting.htm#cubefree">On the number of cubefree integers not exceeding N</a>.

%H Richard C. Orr, <a href="https://doi.org/10.1112/jlms/s1-44.1.313">On the Schnirelmann density of the sequence of k-free integers</a>, Journal of the London Mathematical Society, Vol. 1, No. 1 (1969), pp. 313-319.

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1511.03860">Set of all densities of exponentially S-numbers</a>, arXiv preprint, arXiv:1511.03860 [math.NT], 2015.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Cubefree.html">Cubefree</a>.

%F A066990(a(n)) = a(n). - _Reinhard Zumkeller_, Jun 25 2009

%F A212793(a(n)) = 1. - _Reinhard Zumkeller_, May 27 2012

%F A124010(a(n),k) <= 2 for all k = 1..A001221(a(n)). - _Reinhard Zumkeller_, Mar 04 2015

%F Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - _Amiram Eldar_, Dec 27 2022

%p isA004709 := proc(n)

%p local p;

%p for p in ifactors(n)[2] do

%p if op(2,p) > 2 then

%p return false;

%p end if;

%p end do:

%p true ;

%p end proc:

%t Select[Range[6!], FreeQ[FactorInteger[#], {_, k_ /; k > 2}] &] (* _Jan Mangaldan_, May 07 2014 *)

%o (PARI) {a(n)= local(m,c); if(n<2, n==1, c=1; m=1; while( c<n, m++; if( 3>vecmax(factor(m)[,2]), c++)); m)} /* _Michael Somos_, Sep 22 2005 */

%o (Haskell)

%o a004709 n = a004709_list !! (n-1)

%o a004709_list = filter ((== 1) . a212793) [1..]

%o -- _Reinhard Zumkeller_, May 27 2012

%o (Python)

%o from sympy.ntheory.factor_ import core

%o def ok(n): return core(n, 3) == n

%o print(list(filter(ok, range(1, 86)))) # _Michael S. Branicky_, Aug 16 2021

%o (Python)

%o from sympy import mobius, integer_nthroot

%o def A004709(n):

%o def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))

%o m, k = n, f(n)

%o while m != k:

%o m, k = k, f(k)

%o return m # _Chai Wah Wu_, Aug 05 2024

%Y Complement of A046099.

%Y Cf. A005117 (squarefree), A067259 (cubefree but not squarefree), A046099 (cubeful).

%Y Cf. A160112, A160113, A160114 & A160115: On the number of cubefree integers. - _Gerard P. Michon_, May 06 2009

%Y Cf. A030078.

%Y Cf. A001221, A124010, A212793.

%Y Cf. A000005, A049599, A077610, A222266, A376365, A376366.

%K nonn,easy

%O 1,2

%A _Steven Finch_, Jun 14 1998